
Parsing Schemata

Ph.D. thesis

Klaas Sikkel

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Sikkel, Nicolaas

Parsing Schemata / Nicolaas Sikkel. - [S.l. : s.n.]. - Ill.
Proefschrift Enschede. - Met lit. opg.
ISBN 90-9006688-8 geb.
Trefw.: computerlingu��stiek.

ISBN 90-9006688-8

c 1993, Klaas Sikkel, Enschede

Illustrations on front cover and pages 1, 41, 133, and 373 reprinted with permission
from Dover Publications, New York, c 1969, after drawings by F. Catherwood,
from J.L. Stephens, Incidents of travel in Central America, Chiapas, and Yucatan

(unabridged reproduction of the 1841 edition, Harper & Brothers, New York).

Gedrukt op chloorvrij gebleekt papier door FEBOdruk, Enschede

Parsing Schemata

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magni�cus,
prof.dr. Th.J.A. Popma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 17 december 1993 te 16.45 uur

door

Nicolaas Sikkel

geboren op 25 april 1954
te Amsterdam

Dit proefschrift is goedgekeurd door de promotor,

prof.dr.ir. A. Nijholt.

Prologue

\Our guide cleared a way with his machete, and we passed, as it lay half buried
in the earth, a large fragment of stone elaborately sculptured, and came to the

angle of a structure with steps on the sides, in form and appearance, so far as the
trees would enable us to make it out, like the sides of a pyramid. Diverging from
the base, and working our way through the thick woods, we came upon a square
stone column, about fourteen feet high and three feet on each side, sculptured in
very bold relief, and on all four of the sides, from the base to the top. The front
was the �gure of a man curiously and richly dressed, and the face, evidently a
portrait, solemn, stern, and well �tted to excite terror. The back was of a di�erent
design, unlike anything we had ever seen before, and the sides were covered with
hieroglyphics. This our guide called an `idol;' and before it, at a distance of three
feet, was a large block of stone, also sculptured with �gures and emblematical
devices, which he called an altar. The sight of this unexpected monument put at
rest at once and forever, in our minds, all uncertainty in regard to the character
of American antiquities, and gave us the assurance that the objects we were in
search of were interesting, not only as the remains of an unknown people, but as
works of art, proving, like newly-discovered historical records, that the people who
once occupied the Continent of America were not savages."

Thus John L. Stephens describes his �rst live acquaintance with the remnants
of Maya civilization, at Cop�an, fall 1839, in Incidents of Travel in Central America,

Chiapas and Yucatan.
\It is impossible to describe the interest with which I explored these ruins. The

ground was entirely new; there were no books or guides; the whole was a virgin
soil. [: : :] The beauty of the sculpture, the solemn stillness of the woods, disturbed
only by the scrambling of monkeys and the chattering of parrots, the desolation
of the city, and the mystery that hung over it, all created an interest higher, if
possible, then I had ever felt among the ruins of the Old World."

Stephens was preparing to visit the remains of ancient art said to exist in the
dense tropical forests, when the president of the USA sent him on a diplomatic
mission to the United States of Central America: a federation of Guatemala,

v

vi Prologue

El Salvador, Honduras, Nicaragua and Costa Rica. He was accompanied by an
English friend, Frederick Catherwood, an architect and artist with extensive ar-
chaeological experience. On their way into Central America, they visited Cop�an.
While Catherwood remained there, making accurate drawings of the antiquities,
Stephens pursued his mission. But he found the country sliding into civil war; the
federal government had ceased to exist. Under harsh conditions, trying to keep
ahead of the war, Stephens and Catherwood travelled on to Mexico and visited,
among others, the ruins at Palenque and Uxmal.

Their journey came to a premature end when Catherwood fell ill in Uxmal.
In 1841 Stephens' book appeared, illustrated with (steel engravings from) Cather-
wood's drawings. Later that year, they embarked upon a second journey and
explored some two dozen ancient sites in Yucatan. Incidents of travel in Yucatan,
the illustrated account of their second journey, was published in 1843.

Who built these cities?

Which fate has befallen the people who once lived here?
Stephens, contemplating the sculptures and hieroglyphic inscriptions in Cop�an,

believed that the history of the town was graven on its monuments.
It took another 119 years to prove that his intuition, rejected by generations

of later Maya scientists, was right.

I came to visit the land of the Maya in February 1991, for the �rst time attend-
ing an international gathering of computational linguists, taking place at Cancun.
The workshop was certainly interesting, but the proceedings were no match for A
Forest of Kings by Linda Schele and David Freidel, a recently published account
of Maya history that I had stumbled upon in a fortunate moment. With one and
a half week to spare, half a dozen ancient Maya sites within a few days' reach,
and Schele and Freidel as most quali�ed guides, I got infected with the same virus
that has had such a grave e�ect upon Stephens, Schele, and many others.

I have to confess that on my trip to the Yucatan peninsula I learned much more
about Maya history than about computational linguistics. But this book shows, I
hope, that I have returned to the duties for which the University of Twente has
engaged me the last four years.

Most of the adventure and romantic appeal of travel (and most of its hardship)
has disappeared. There is preciously little \virgin soil" left, if any at all.

But if one goes to the ruins of Cob�a, o� the main tourist roads, one can
climb the 42 meter high Nohoch Mul , the tallest ancient structure in the Northern
lowlands, and have a magni�cent view over the Cob�a lake and the surrounding
country, perfectly at except for some steep and forest-covered elevations which,
surely, must cover yet unexplored remnants of these mysterious people.

Acknowledgements

This book is the result of four years work at the University of Twente. I am
amazed, in retrospect, that it was only such a short period of time; I must have
felt very much at home very soon. In parting, I would like to express my gratitude
to the people who made me feel at home and at ease and contributed to the
progress of this work.

Adri Breukink and Anton Nijholt have been most hospitable; their house is
known for its quality Belgian beers, barbecues, and other delicacies; their e�orts
in bringing about a social atmosphere in the Parlevink group are well appreci-
ated. Anton Nijholt, furthermore, guided me into computational linguistics and
supervised the Ph.D. research which, it must be said, has not been an unimportant
part of my life in the past period | and the raison d'être for my stay in Enschede
in the �rst place.

I have enjoyed working together with Rieks op den Akker, not only on the Head-
Corner parsing algorithm that led to Chapters 10 and 11, but also in preparing
the lectures Formele Analyse van Natuurlijke Taal .

Some brainstorm sessions with Wil Janssen, Job Zwiers and Mannes Poel re-
sulted in the \primordial soup" metaphor, eventually leading to a joint COLING
paper. Their group, expanded with Maarten Fokkinga, served as a testbed for the
ideas that are laid down in Chapters 3{6. I have categorically resisted Maarten's
notation, but his argument that some de�nitions must be wrong because they can-
not be expressed in category theory has certainly helped to simplify the contents
of Chapter 4. Peter Asveld also suggested some improvements in de�nitions.

Marc Lankhorst did his D-opdracht on the PBT parser of which I had given but
a rather sketchy �rst design. The resulting paper, appearing here as Chapter 13,
is a joint e�ort, but the real work has been done by Marc. Another student whose
D-opdracht I have exploited is Margiet Verlinden. She designed and implemented
a Head-Corner parser for uni�cation grammars.

Paul Oude Luttighuis persists in the idea that our technical report on General-
ized LR parsing of attribute grammars, leading to a paper at the 1993 International
Workshop on Parsing Technologies, is joint work. This is, if not plainly untrue,

vii

viii Acknowledgements

at least a distorted perception of reality. We had a series of discussions on the
subject, but Paul did all the work.

Valuable technical comments and suggestions for improvements at various
stages have been given by Mark-Jan Nederhof, Gertjan van Noord, and Gior-
gio Satta. Furthermore, some anonymous referees of papers have given useful
comments. I had interesting discussions with Rens Bod, Hans de Vreught, Ren�e
Leermakers and Jan Rekers. (With Jan I also share the memory of our morn-
ing baths in the Caribbean Sea, for which none of the other Cancun workshop
participants wanted to get up early).

Theo de Ridder and my former colleagues at the Software Engineering Research
Centre in Utrecht may notice that some fundamental ideas in this book, although
di�erent in format and appearance, have roots in my SERC period. Although a
parsing schema is not exactly a domain-oriented virtual machine, there is a deep
correspondence between these two notions.

Talking about roots, I should mention that I thoroughly enjoyed studying com-

puter science at the Free University in Amsterdam, where Reind van de Riet, Andy
Tanenbaum, John-Jules Meyer and Hans van Vliet have been inuential in shaping
my views in this �eld.

With Marc Drossaers, Jan Schaake, and Toine Andernach I shared the joys
and problems of doing Ph.D. research at the Parlevink project | and a lot of
co�ee. The have supported me in many ways.

An essential part of my social life in Enschede was provided by our kookgroep.
Hetty Grunefeld, Gert Veldhuijzen van Zanten, Marjo Bos, Lodewijk Bergmans,
Margriet O�ereins, and Marc, Wil, Jan, Paul and I enjoyed weekly dinners and
occasional other events.

While living in Enschede, I appreciated getting some local involvement, un-
related to the university. The regional group of the �etsersbond enfb provided
ample opportunities. I feel sorry to leave them and wish Willem-Jaap, Hilde,
Theo, Ruurdjan, Joke, Gerrit, John, Gerard (who recently joined us) and Rob
(who might return) much success with their future activities.

Last but not least I would like to thank Heidrun Wiedenmann, for making sure
that I did take some time o�, for bearing with me under the growing pressure of
getting this volume �nished, and for everything else.

Contents

Prologue v

Acknowledgements vii

I EXPOSITION 1

1 Introduction 3

1.1 The structure of language : 5

1.2 Parsing : 9

1.3 Parsing schemata : 11

1.4 Overview : 14

2 The primordial soup framework 19

2.1 Context-free parse trees : 19

2.2 Primordial soup : 22

2.3 Restricted versions of the primordial soup : : : : : : : : : : : : : : 27

2.4 Extensions and related formalisms : : : : : : : : : : : : : : : : : : 36

2.5 From primordial soup to parsing schemata : : : : : : : : : : : : : : 38

II FOUNDATION 41

3 Tree-based parsing schemata 43

3.1 Context-free grammars : 44

3.2 Some small extensions to context-free grammars : : : : : : : : : : 48

3.3 Deduction systems : 51

3.4 Enhanced deduction systems : 56

3.5 Tree-based parsing schemata : 58

3.6 Conclusion : 62

ix

x CONTENTS

4 Item-based parsing schemata 63

4.1 Quotient deduction systems : 65
4.2 Quotients of enhanced deduction systems : : : : : : : : : : : : : : 69
4.3 Quotient parsing schemata : 71
4.4 Item-based parsing schemata : 74
4.5 The relation between Sections 4.3 and 4.4 : : : : : : : : : : : : : : 77
4.6 Examples of parsing schemata : 80
4.7 Conclusion : 88

5 Re�nement and generalization 91

5.1 Mappings between deduction systems : : : : : : : : : : : : : : : : 92
5.2 Re�nement: a formal approach : 95
5.3 Some examples of re�nement : 102

5.4 Generalization : 106
5.5 Conclusion : 107

6 Filtering 109

6.1 Redundancy elimination : 112
6.2 Static �ltering : 113
6.3 Dynamic �ltering : 115
6.4 Step contraction : 119
6.5 The family of Earley-like parsing schemata : : : : : : : : : : : : : 124
6.6 A summary of relations between parsing schemata : : : : : : : : : 128
6.7 Conclusion : 128

III APPLICATION 133

7 An introduction to uni�cation grammars 135

7.1 Uni�cation-based parsing schemata: a preview : : : : : : : : : : : 136
7.2 The example grammar UG1 : 140

8 Parsing schemata for uni�cation grammars 147

8.1 Feature structures : 149
8.2 Feature lattices : 156
8.3 Composite feature structures : 159
8.4 Composite feature lattices : 162
8.5 Uni�cation grammars : 164
8.6 Composition of decorated trees : 169
8.7 Parsing schemata for uni�cation grammars : : : : : : : : : : : : : 171
8.8 The example revisited : 174

8.9 Other grammar formalisms : 179
8.10 Related approaches : 183
8.11 Conclusion : 183

CONTENTS xi

9 Topics in uni�cation grammar parsing 185

9.1 Feature graph uni�cation : 186

9.2 Nondestructive graph uni�cation : : : : : : : : : : : : : : : : : : : 193

9.3 Further improvements : 198

9.4 Disjunctive feature structures : 201

9.5 Restriction : 204

9.6 Default restrictors : 210

9.7 Two-pass parsing : 212

9.8 Conclusion : 214

10 Left-Corner chart parsing 215

10.1 Chart parsers : 216

10.2 Left-Corner chart parsing : 220

10.3 Correctness of the LC chart parser : : : : : : : : : : : : : : : : : : 226

10.4 An LC chart parser with simpli�ed items : : : : : : : : : : : : : : 231

10.5 The relation between pLC, sLC, and LC : : : : : : : : : : : : : : 233

10.6 Conclusion : 235

11 Head-Corner chart parsing 237

11.1 Context-free Head Grammars : 238

11.2 A predictive Head-Corner chart parser : : : : : : : : : : : : : : : : 239

11.3 Correctness of the HC chart parser : : : : : : : : : : : : : : : : : : 243

11.4 HC chart parsing in cubic time : 246

11.5 Correctness of sHC : 251

11.6 Complexity analysis of sHC : 253

11.7 The relation between pHC, sHC, and dVH : : : : : : : : : : : : 260

11.8 HC parsing of uni�cation grammars : : : : : : : : : : : : : : : : : 262

11.9 Related approaches : 268

11.10 Conclusion : 268

12 Generalized LR parsing 271

12.1 Preliminaries : 272

12.2 LR parsing : 273

12.3 Generalized vs. deterministic LR parsing : : : : : : : : : : : : : : : 279

12.4 Tomita's algorithm : 281

12.5 A formal de�nition of Tomita's algorithm : : : : : : : : : : : : : : 293

12.6 Pros and cons of Tomita's algorithm : : : : : : : : : : : : : : : : : 298

12.7 An annotated version of Tomita's algorithm : : : : : : : : : : : : : 300

12.8 Parsing Schemata for LR(0) and SLR(1) : : : : : : : : : : : : : : : 305

12.9 Conclusion : 310

xii CONTENTS

13 Parallel Bottom-up Tomita parsing 311

13.1 The PBT parsing schema : 312
13.2 A PBT parser : 313
13.3 A more e�cient PBT parser : 319
13.4 The construction of a distributed parse list : : : : : : : : : : : : : 321
13.5 A formal de�nition of the PBT algorithm : : : : : : : : : : : : : : 324
13.6 Empirical results : 330
13.7 Related approaches : 333
13.8 Conclusion : 334

14 Boolean circuit parsing 335

14.1 Preliminary concepts : 336
14.2 Recognizing networks : 339
14.3 Parsing networks : 343
14.4 Some further issues : 347
14.5 Rytter's algorithm : 348
14.6 Correctness of Rytter's algorithm : : : : : : : : : : : : : : : : : : : 357
14.7 A parsing network for Rytter's algorithm : : : : : : : : : : : : : : 363
14.8 Conditional parsing systems : 366
14.9 Related approaches : 369
14.10 Conclusion : 370

IV PERSPECTIVE 373

15 On language and natural language processing 375

15.1 Grammar : 376
15.2 The meaning of language : 378
15.3 Natural language processing : 381
15.4 Machine translation : 382
15.5 Natural language interfaces : 385
15.6 Conclusion : 386

16 Conclusions 387

16.1 Some general remarks : 387
16.2 Research contributions of this book : : : : : : : : : : : : : : : : : : 388
16.3 Ideas for future research : 389

Samenvatting 391

Epilogue 393

A note on the illustrations : 394

Bibliography 395

Part I

EXPOSITION

1

Chapter 1

Introduction

Syntax describes the structure of language. A well-formed sentence can be broken

down into constituents, according to syntactic rules. A constituent that covers

more than a single word can be broken down into smaller constituents, and so on.

In this way one can obtain a complete, hierarchical description of the syntactic

structure of a sentence. A computer program that attributes such structures to

sentences is called a parser . This book is about parsers, and our1 particular

concern is how such parsers can be described in an abstract, schematic way.

This is not the �rst book about parsing (nor will it be the last). In 1.3 we

discuss our speci�c contribution to the theory of parsing. But before zooming in

on the research questions that will be addressed, it is appropriate to make a few

general remarks.

In the analysis of language we make a distinction between form and mean-

ing. The relation between form and meaning is an interesting and not entirely

unproblematic one. There are sentences that are grammatically correct, but do

not convey any sensible meaning, and ill-formed sentences with a perfectly clear

meaning. But we are not concerned with meaning of language (except for a single

section in Chapter 15) and restrict our attention to form.

The form of a language is described by the grammar. Grammatical analysis

can be further divided into morphology , describing the word forms, and syntax ,

describing sentence structures. In computer science, the words \grammar" and

1It is common practice in scienti�c texts written by a single author to use the plural �rst
person forms \we" and \our" to mean \I" and \my". This is to be understood as pluralis

modestiae; scienti�c research is a group activity and not one's individual merit. I will conform to

this custom and mostly use the plural form. I will use the singular form for personal comments
and also for particularly strong claims, where I want it to be clear that none of my tutors and

colleagues share any part of the blame, might I be proven wrong.

3

4 1. Introduction

\syntax" have the same meaning, because computer programming languages do

not have any morphology. In linguistics, despite the fact that these words are

not equivalent, \syntax" is also known as \phrase structure grammar" which |

sloppily but conveniently | is often abbreviated to \grammar". But we are not

concerned with morphology either, and throughout this book the word \grammar"

refers to phrase structure grammar, unless explicitly stated otherwise.

We will not discuss the grammar of any existing language in any detail. So,

with some overstatement, one could say that this book is not about language at

all. The objects of study are formalisms that are used to describe the syntax of

languages, and the parsing of arbitrary grammars that can be described in such

formalisms. This is a useful scienti�c abstraction. Rather than making a parser

for a particular grammar for a particular language, one constructs a parser that

works on a suitable class of grammars. For any grammar within that class, a

program can be instantiated that is a parser for that particular grammar.

Natural language is informal. Language is living , continuously evolving. The

most rapidly changing part of a language is the lexicon. New words are added

all the time and old words obtain new meanings and connotations; no lexicon is

ever complete. The most elusive aspect of language is meaning. We live in an

informal world, and any formal theory of meaning is at best an approximation of

\real" meaning. The grammar (comprising syntax and morphology) is a rather

more stable part of language. Grammars do change over time, but these changes

are slow and few. If we are to construct computer systems that handle natural

language in some way or other, it is a small and acceptable simpli�cation to say

that the grammar of a language is �xed.

Despite the fundamental di�erences between natural languages and program-

ming languages, there is some overlap in parsing theory of both �elds. Grammar

formalisms that are used in both �elds share the notion of context-free grammars

(CFG's). For a complete description of the structure of a language, CFG's have

too much limitations and one needs more powerful formalisms. But for the pur-

pose of constructing parsing techniques, it makes sense to break up the complex

task of parsing into di�erent levels. Hence is it useful to distinguish between a

context-free backbone that describes the \core" of the grammar from augmenta-

tions to the context-free formalism that describe additional characteristics of the

language.2 We are primarily interested in parsing of natural languages, but many

issues have some relevance for programming language parsing as well. Only in

chapters 7, 8, and 9 we concentrate on uni�cation grammars, a modern formalism

(or, to be precise, a group of formalisms) that is speci�cally designed to describe

natural language grammars.

2This does not necessarily mean that a parser should �rst construct a context-free parse and

afterwards augment this with other features. A parser that integrates these aspects into a single
process can still be thought of as consisting of di�erent (but interacting) modules for context-free

phrase structure analysis and for evaluation of other features.

1.1 The structure of language 5

The fact that this book is in the interface between computer science and com-

putational linguistics has advantages and disadvantages. On the positive side, the

purpose and contents of the discussed subjects must be explained to a heteroge-

neous audience. This means that one cannot | as many theoretical computer

scientists, by virtue of their specialty, are inclined to do | engage in increasingly

technical and formal reasoning and along the way forget about the motivation be-

hind the theory that is being developed. One has to make clear what is being done

and why it makes sense to do it that way; not all the readers will be familiar with

the culture of one's own sub-�eld in which such considerations are part of common

knowledge and, if the subject is well-established, might never be questioned. A

disadvantage, perhaps, is the increased length of the text. Many subjects could be

discussed rather more concisely for a small group of fellow specialists. But this has

a positive side as well: at least some chapters and sections should be easy reading.

The more mathematically inclined reader with some knowledge of the �eld may

skip large pieces of introductory text and trivial examples and move straight to

de�nitions, theorems, and proofs. The less mathematically inclined reader, on the

other hand, may skip much of the technical stu� if he3 is prepared to take for

granted that the claimed results can be formally established. To the reader who

might be put o� by the size of this volume it is perhaps a comforting thought that

many parts can be read independently and hardly anybody is expected to read

everything.

In Section 1.1 we will spend a few words on the history of syntax as a �eld of

study. Phrase structure grammars and parsing are introduced in 1.2, the general

idea of parsing schemata is presented in 1.3. Section 1.4, �nally, gives an overview

of the following chapters.

1.1 The structure of language

Modern linguistics starts in the 1950ies with the work of Noam Chomsky. He was

the �rst (in the Western world4) to develop a formal theory of syntax. Native

speakers of a language have an intuitive understanding of the syntax. One is able

to understand a sentence as syntactically correct, even though it does not convey a

sensible meaning. An example, given by Chomsky, is the sentence \Colorless green

ideas sleep furiously." Even though it is nonsense, the syntax is correct, in contrast

3In contexts where the gender of a third person is of no importance, I will sometimes write
\he" and sometimes \she".

4A formal grammar of Sanskrit (as it was spoken 1000 years earlier but preserved in ritual
Vedic texts) was produced between 350 b.C. and 250 b.C. by the Indian scholar P�an. ini. This was
unknown to the European school of general linguistics (with its roots in the Greek and Roman
tradition) until the 19th century. P�an. ini used rewrite rules, both context-free and context-
sensitive. His grammar was more concerned with morphology than syntax, as word order in
Sanskrit is rather free. (Cf. Staal [1969])

6 1. Introduction

to a string of words \Furiously sleep ideas green colorless". This shows that syntax

is autonomous, one does not need to know the meaning of a sentence in order to

decide whether the sentence is well-formed or ill-formed. People with the same

native language, despite great di�erences in learning and linguistic felicity, share

this intuition of what is syntactically correct. It is this human faculty of syntax

that Chomsky set out to investigate.

A syntactic theory, like any scienti�c theory, is inductive. A theory can never

be derived from a given set of facts, however large. The design of a theory is

speculative. But when a theory has been postulated, one can investigate how well

it matches the facts. A good theory of syntax will describe as well-formed those

sentences that are recognized as evidently well-formed by native speakers and

describe as ill-formed those sentences that are evidently ill-formed. In between

these, there is a group of sentences of which the correctness is doubted, even by

grammarians. One should not worry about these fringe cases and let the theory

decide. Chomsky set forth to develop such a theory by introducing a grammar

formalism and describing the syntax of English by means of that formalism. In

order to obtain a universal theory of syntax, it should be possible to describe the

syntax of all human languages in similar fashion.

But before we discuss any detail of modern linguistics and computational lin-

guistics, let us consider the question why everything Chomsky did was so new.

What was wrong with pre-Chomskian linguistics, and why do we know so little

about it?

Science makes abstractions of the world. A coherent set of abstractions is called

a paradigm. Science (or at least good science) is objective within a paradigm, but

the question whether a given set of abstractions is better than a set of di�erent

abstractions cannot be answered scienti�cally. Thomas Kuhn [1970] has shown

that scienti�c knowledge is not necessarily accumulative. In a scienti�c revolution

an old, established paradigm is rejected in favour of a new one; our understanding

of the world is reconstructed in terms of the new paradigm. Chomsky initiated

such a paradigm shift.

Many aspects of syntactic theory as we see it now were in fact known in pre-

Chomskian times. But they were seen in a di�erent light. Linguistic research

concentrated on other issues. Linguistics described the languages that occur in

the world, and their development. An important sub-�eld was that of compara-

tive linguistics: how are languages related to one another, and how do languages

develop over time? A major achievement is the reconstruction of the development

of Indo-European languages from a common ancestor.

Comparative linguistics must be based on facts, and these facts are provided

by descriptive linguistics. The description of existing languages did include the

syntax. Syntax was a collection of constructs that could be used to form sentences.

But the interesting point about syntax was in which way it di�ers from and cor-

responds to the syntax of other languages. When P�an. ini's grammar of 3000 year

1.1 The structure of language 7

old Sanskrit became known to Western scholars, this gave a great impulse to

comparative linguistics, not so much to general theories of language.

Wilhelm von Humboldt [1836] was the �rst in Europe to note that only a �nite

number of rules is needed to construct a language with an in�nite variety of sen-

tences. But theories of language in the Western tradition had since antiquity been

troubled by a mixture of facts and philosophical preconceptions. They discussed

\the place of language in the universe" [Bloom�eld, 1927] rather than the struc-

ture of language. It took another century to disentangle these issues, get rid of all

metaphysical speculation and simply take the facts for the facts. Leonard Bloom-

�eld [1933] is generally seen as the person who established general linguistics as a

science.

In this view, distinguishing \correct" sentences and forms from \incorrect"

ones was a non-issue. Or even worse, it was a hobby of schoolmasters and people

of some learning but with no clue about contemporary linguistics. Linguistics as

a science is descriptive, not prescriptive.

Many elements of modern syntactic theory are given already by Bloom�eld, but

(as we have pointed out abundantly) from a di�erent perspective. Constituents

could be decomposed into smaller constituents, hence, as we see it now, syntax

trees are implicitly de�ned as well. There was a distinction between recursive (en-

docentric) and non-recursive (exocentric) constituent formation. It was stipulated

that every language has only a small number of exocentric constructs.

It was Chomsky [1957] who put the notion of competence grammar on the

linguistic agenda, and started to develop a formal theory of syntax. He introduces

transformational grammar (TG) and compares it with two other formalisms that

could serve as a basis for such a linguistic theory. These two formalisms are nowa-

days (but not then) known as �nite state automata and context-free grammars.

The �rst is shown to be insu�cient (because it cannot handle arbitrary levels of re-

cursion). The second is also rejected. A transformational grammar is much smaller

and more elegant than a context-free grammar for the same language. Moreover, a

transformational grammar provides more insight as it shows the relation between

di�erent, but related sentences. A small set of kernel sentences is produced by a a

set of rewrite rules (that constitute a context-free grammar). All other sentences

can be produced from these kernel sentences by applying transformations. In this

way a much smaller number of rules is needed than in a context-free grammar of

English | if one exists.5

Chomskian linguistics has developed considerably over the last three decades.

The initial notion of a kernel set of sentences has been replaced by the notion of

5Whether English can be described by a context-free grammar was posed as an open question
by Chomsky [1957]. The issue has attracted a lot of discussion. Pullum and Gazdar [1982],
in a review of the debate, inspected all the arguments opposing context-freeness and refuted

all of these as either empirically or formally incorrect. Huybregts [1984], Shieber [1985b], and
Manaster-Ramer [1987] have established beyond doubt that Swiss-German and Dutch are not

context-free languages.

8 1. Introduction

a deep structure, that is produced by the rewrite rules of the grammar. Sentences

occurring in the language have a surface structure that is obtained from the deep

structure by means of transformations. A much more elaborate version of TG, also

including semantics, is known as the standard theory [Chomsky, 1965]. Continuing

research led to an extended standard theory in the seventies. But transformational

grammar was eventually abandonded in favour of Government and Binding (GB)

theory [Chomsky, 1981].

A context-free phrase structure grammar of a language has much more rules

than a transformational grammar, but from the perspective of computational lin-

guistics, context-free grammars are much simpler. Parsing a sentence according

to a transformational grammar is, in general, not computationally tractable (and

the same holds for GB), whereas parsing of context-free grammars can be done ef-

�ciently. General-purpose context-free grammars have been constructed that have

an adequate coverage of English phrase structure (see, e.g., Sager [1981]).

As has been stated in the introduction of this chapter, there are various ways

in which other grammatical information (as subject-verb agreement) and semantic

information can be added to a context-free phrase structure. The trend in compu-

tational linguistics is towards so-called uni�cation grammars, in which this distinc-

tion is blurred. Nevertheless, for the purpose of constructing e�cient parsers it is

useful to keep making a distinction between phrase structure and other syntactic

and semantic features. The �rst six Chapters deal exclusively with (context-free)

phrase structure and we postpone an introduction of uni�cation grammars to

Chapter 7.

The development of the \high-level", third generation programming languages

started in the 1950ies as well. Before such languages were available, one had

to instruct computers in languages that are much more closely related to the

hardware capabilities of such a machine. Move a number from this location to

that location; if the contents of a speci�c memory location is zero, then jump to

some other position in the computer program; and so on. High-level languages

o�ered the possibility of \automatic programming". Rather than writing machine

instructions (at the level of second generation languages), one could concentrate

on what a program is supposed to do. Such a program could be translated into

\real" computer language by means of another program, called a compiler .

In the de�nition of the programming language Algol 60 the structure of the

grammar was described by a formalism that later became known as Backus-Naur

Form (BNF). It was only after the publication of the Algol de�nition [Naur,

1960] that computer scientists realized similarities in BNF and phrase structure

grammars that were studied by linguists. Ginsburg and Rice [1962] proved that

BNF is equivalent to context-free grammars. This insight sparked o� a of body

of research in formal languages, which is now part of the foundations of computer

science as well as formal linguistics. Hence is it not a coincidence that, despite the

1.2 Parsing 9

radical di�erences in structure and complexity, there is considerable overlap in the

underlying theory of syntax of natural languages and programming languages.

1.2 Parsing

We will de�ne the parsing problem for context-free (backbones of) grammars and

discuss briey why this is still a relevant area for research. We do not dwell upon

the historical development of various parsing techniques. This cannot be properly

done in a few paragraphs without getting involved in some technical detail. The

interested reader is referred to Nijholt [1988] for a good and easy to read overview.

A parse tree is a complete, hierarchical description of the phrase structure of

a sentence. The parsing problem, for a given grammar and sentence, is to deliver

all parse trees that the grammar allows for that sentences. Stated in this very

general way, the parsing problem is actually underspeci�ed: we do not prescribe

a formalism in which these parse trees are to be denoted. There are techniques

to specify such a forest of trees in a compact way, without listing all the trees

individually (cf. Chapter 12). The savings can be considerable. Because we look

at syntactic structure only and do not rule out parse trees that yield an absurd

interpretation, most sentences have a lot of di�erent parse trees.

Related to the parsing problem is the recognition problem. For a given grammar

and sentence it is to be determined whether the sentence is well-formed (i.e., at

least one parse tree exists). This is a fully speci�ed problem. There are only two

possible answers and how these are denoted (\true" or \false", or \1" or \0") is

not relevant.

An algorithm is a prescription how to solve some problem in a systematic way.

Algorithms can be encoded in programming languages, so that a computer can

solve the problem. A parsing algorithm, or parser6 for short, is an algorithm that

solves the parsing problem. A recognizing algorithm, or recognizer for short, is an

algorithm that solves the recognition problem.

There is an intermediate form between parsers and recognizers. Such algo-

rithms provide an answer to the question whether the sentence is well-formed and,

additionally, deliver a structured set of intermediate results that have been com-

puted in order to obtain the answer. These intermediate results encode various

details about the sentence structure and are of great help to actually construct

parse trees. Such algorithms could be called \enhanced recognizers", but it in

the literature these are usually called parsers as well, despite the fact that no

parse trees are produced. With exception of Chapters 2 and 3 we will mostly be

concerned with parsers in this improper sense.

6Usually a parser is understood to be a computer program, rather than an algorithm encoded

in the program, but this distinction is irrelevant here.

10 1. Introduction

In di�erent sub-�elds there are some variants of the parsing problem. In the

�eld of stochastic grammars, the task is to �nd the most likely parse tree according

to some probability distribution. In parsing of programming languages one is

interested in a single, uniquely determined parse tree. In case of ambiguities there

must be additional criteria that specify which is the right parse tree | otherwise

a program may have an ambiguous interpretation, which is highly undesirable.

Programming language grammars are much simpler than natural languages,

but the sentences (programs) are much longer. Hence the specialized techniques

to construct e�cient parsers are di�erent, but there is some cross-over. Mostly

this is the adaptation of computer science parsing techniques to parsing of natural

languages. Occasionally, however, it also happens that the compiler construction

community adapts techniques that were developed in computational linguistics.

The theory of parsing is some 30 years old now, and one may wonder whether

there is anything of general interest that has not yet been uncovered in this �eld.

There are always enough open questions (and more answers lead to even more

open questions) and a �eld is never �nished. But as the body of knowledge grows,

the frontier of research is pushed to more and more specialized issues in remote

corners of knowledge that perhaps nobody except a small bunch of fellow scientists

is even aware of. There are two reasons, however, that make parsing theory an

interesting �eld up to this day.

Firstly, there is the issue of parallel parsing. A variety of parallel parsing al-

gorithms has been proposed in the last decade. There are great di�erences, not

only in the type of parsing algorithm employed, but also in the kind of parallel

hardware (or abstract machine) that such algorithms should run on. In order to

compare the relative merits of di�erent parallel parsing algorithms, one should

start to describe these in a uniform way. Parsing schemata have originally been

designed as an abstract framework that allows comparison of wildly di�erent par-

allel parsers on a theoretical level. In order to �nd such a common description, one

has to abstract from a great many details. As it turns out, the framework is also

useful for a high-level description of traditional, sequential parsing algorithms; it

is stated nowhere that an implementation of a parsing schema must be parallel.

Secondly, the formalisms in which natural language grammars are described

have changed over the last decade. This has some consequences for parsing natural

language grammars. Logic has gained an important role in the interface between

grammarians and computers. On the one hand, there are programming languages

as Prolog or, more recently, Constraint Logic Programming (CLP), [Ja�ar and

Lassez, 1987], [Cohen, 1990], that allow programs to be written as a set of logic

formulae. On the other hand, grammars can also be written as a set of logic

formulae. A parse, then, corresponds to a proof. The sentence is postulated as a

hypothesis, and the sentence is correct (and a parse is produced) if a formula can

be proven that can be interpreted as \this is a sentence (and its structure is so-

and-so)". Such a proof can be carried out by a Prolog or CLP interpreter, i.e., a

1.3 Parsing schemata 11

computer program. So we have another level of \automatic programming", where

one only needs to specify the grammar and there is no more need to construct a

parser. There is a catch, however. Such speci�cations in logic can (under certain

restrictions) be interpreted directly by machines, but that does not necessarily

mean that a machine will do so in an e�cient manner. From a computational point

of view it is more appropriate to see such a grammar as an executable speci�cation,

not as the most suitable implementation of a parser. Computer science, therefore,

can make valuable contributions to the construction of e�cient parsers for these

grammar formalisms.

A nice example of this last point is the following. The context-free backbone

is no longer particularly relevant for the speci�cation of a grammar. Hence, as

things go in evolution, context-free backbones tend to dwindle away. A modern

grammar speci�cation with \degenerated" context-free backbone, typically has a

much larger context-free backbone hidden inside the grammar. It has recently been

shown by Nagata [1992] and Maxwell and Kaplan [forthcoming] that retrieving

and using a more elaborate context-free backbone can substantially increase the

e�ciency of a parser.

1.3 Parsing schemata

There are many di�erent ways to design a parser. One can build trees branch by

branch, adding grammar productions one at the time. Or one can collect various

bits of tree and combine small trees to larger trees in various ways. The important

thing is that it is a constructive process. Parsing schemata can be use to describe

any parser that works in a constructive way.

There are non-constructive parsers as well. An entirely new brand of compu-

tation is embodied in neural networks. We will briey discuss these in Chapter

14. But almost all parsers that run on von Neumann machines (i.e. computers

as we know them) are constructive.7 A constructive parser computes a series of

intermediate results and these (or, to be precise, most of these) are used for the

computation of next, more advanced intermediate results, until the �nal result is

established.

A parsing schema focuses on these intermediate results, called items in parsing

terminology. The essential traits of a parser can be described as follows.

� for any given sentence, an initial set of items is constructed,

7An example of a nonconstructive parser (that is in fact an enhanced recognizer) is the
the LE(p;q) algorithm of Oude Luttighuis [1991], that parses a restricted class of grammars in
logarithmic time. It makes essential use of a non-constructiveparallel bracketmatchingalgorithm

[Gibbons and Rytter, 1988]. The question whether a string of brackets is well-formed is answered
in logarithmic time, but without giving a clue as to which opening bracket matches which closing

bracket.

12 1. Introduction

� for any given grammar there is a set of rules that describe how new (larger)

items can be computed from known items.

All that remains to be done, then, is apply all the rules to all the items over and

over again until all items that can be computed from the initial set have been

computed. We see the �nal set of items as the result delivered by a parser. Some

special items indicate that a parse tree exists. Hence the sentence is well-formed

if and only if at least one of these special items is computed.

A parsing schema is not an algorithm. An algorithm has a number of aspects

that are absent in a parsing schema:

� data structures in which computed items can be stored and e�ciently search-

ed for;

� control structures, making sure that all relevant steps are taken, in some

appropriate order;

� (only for parallel algorithms) communication structures, ensuring that rele-

vant items are exchanged between di�erent cooperating processors.

Each of these structures can be designed in a variety of ways, leading to a variety

of di�erent parsing algorithms with a single underlying parsing schema. It is by

abstracting from these structures that the essential traits of very di�erent parsing

algorithms can be described in a uniform way and compared.

A number of di�erent questions come to mind. Firstly, there are some technical

concerns. How general is the framework? The fact that all parsers compute

intermediate results does not give any guarantee that the kinds of intermediate

results computed by di�erent algorithms are compatible. Secondly, what is the

relation between this framework and other parsing frameworks that have been

published in the past? Thirdly, is there any purpose in writing down parsing

schemata, other than an exercise in manipulation of formal systems? We will

briey address each of these questions.

Di�erent parsers produce di�erent kinds of intermediate results. There are a

lot of di�erent \item-based" parsers that use a lot of di�erent kinds of items. In

Chapter 4 a theory of items is developed, that provides a general understanding

of what an item is. All the various items that are used by di�erent parsers can be

seen as special cases of these general items. It is merely the notation of items that

di�ers among parsers (and for good reason: in the description of a parser it makes

sense to use an item notation that is most convenient for that particular parser).

Not all parsers are \item-based", however. So what about those that use radi-

cally di�erent kinds of intermediate results? We will argue that every constructive

parser is, in principle, item-based. This principle might be hidden from the surface

and not show up in the parsing algorithm. A typical example is a so-called LR

1.3 Parsing schemata 13

parser, which is based on a state transition function and a stack of states as the

guiding structures. In this particular parser, the items do not appear run-time,

while parsing a given sentence, but have been employed compile-time, in the con-

struction of the table that encodes the state transition function. It is possible to

partly \uncompile" an LR parser and show run-time at each step which items are

in fact recognized. Any constructive parser, in similar fashion, has an underlying

item-based parser and hence can be described by a parsing schema.

Parsing schemata are a generalization of the chart parsing framework [Kay,

1980], [Winograd, 1983]. For every chart parser it is rather trivial to write down

an underlying parsing schema, but a schema can be implemented by a great many

algorithms that need not even remotely resemble chart parsers (in which case the

relation between algorithm and schema will not be entirely trivial). One could say

that the canonical implementation of a parsing schema is a chart parser.

Parsing schemata are useful devices in several respects. This research was

started with the purpose of bringing some order into the �eld of parallel parsing.

A great variety of parallel parsers have been published in the last decade (cf. op

den Akker et al. [1992]). Although our work has shifted to a more general nature,

quite a few of these algorithms are incorporated in the framework presented here.

An interesting kind of application is cross-fertilization of di�erent parsing algo-

rithms with related underlying schemata. When the relation between algorithms

is understood, most improvements and optimizations of one algorithm can eas-

ily be ported to related algorithms. An good example of cross-fertilization is the

Parallel Bottom-up Tomita algorithm described in Chapter 13. A parallel version

of Tomita's algorithm is obtained in which the division of tasks over processors

is organized radically di�erent from the parallel Tomita parsers that have been

formulated before. The inspiration to look at the problem from a di�erent angle

came from a comparison with Earley's algorithm where bottom-up parallelization

is simply the natural thing to do.

On a more fundamental level, one can see parsing schemata as a separate,

well-de�ned level of abstraction in between grammars and parsing algorithms. A

grammar speci�es implicitly what the parse trees of a sentence are. A parsing

algorithm speci�es explicitly how these parse trees can be computed. A parsing

schema speci�es which steps could be taken that guarantee the construction of all

parse trees, without considering data structures, control structures and communi-

cation structures. Such a well-de�ned intermediate level is a valuable aid because

it allows a problem to be split into two smaller and easier problems. This is true

for practical applications (the design of programs) as well as theoretical applica-

tions (the construction of proofs). It is rather more easy to prove the correctness

of a parsing schema than that of a parser, simply because there is much less to

prove. The correctness of a parser, then, can be established by proving that it is

a correct implementation of schema that is known to be correct. Anyone who has

ever gone through a formal correctness proof of an LR parser will not fail to see

14 1. Introduction

this point.

It is very hard to come up with the \right", useful abstractions and once you

have found them, the result sometimes looks trivial. But this is usually a sign of

being on the right track; if a complicated issue can be cast into terms that make

it less complicated, something valuable has been gained. Parsing schema speci�-

cations are concise and formal, but nevertheless relatively easy to understand.

The major feat in this respect is the de�nition of parsing schemata for uni�ca-

tion grammars in Section 8.5. Uni�cation grammar parsing involves a combination

of parsing techniques and feature handling techniques. Most articles in the �eld

of natural language parsing are formal in one area and informal in the other area.

It takes some engineering to combine these techniques from di�erent �elds into

a single formalism without depleting the greek alphabet for denoting all kinds of

di�erent objects. The fact that feature percolation in uni�cation grammar parsing

can be speci�ed explicitly and clearly in an elegant, concise notation is a sign that

parsing schemata are useful abstractions indeed.

1.4 Overview

A scienti�c text is tree-structured. I happen to have a book on grammar where

the use of the conjunctive verb forms in conditional sentences is treated both in

Section 2.1.7.2.1.2 (under verb forms) and in Section 3.6.2.3.3.4.2 (under syntax)

with proper cross-references back and forth [Helbig and Buscha, 1972]. Such a

delicate text structure is very scienti�c, but an insult to the reader. I have tried

not to give in to this temptation and use the chapter as the main structuring

element, following the adage

if a subject is worth to be spent 50 pages on, it surely deserves more

than a single chapter .

A broad outline of the contents is given by the division into four parts:

Part I, Exposition (Chapters 1{2) introduces the topics that will be treated in

the remaining parts.

Part II, Foundation (Chapters 3{6) de�nes a formal theory of parsing schem-

ata.

Part III, Application (Chapters 7{14) shows that parsing schemata are not just

a theoretical nicety but can be employed for a series of di�erent purposes.

Part IV, Perspective (Chapters 15{16) draws conclusions and discusses some

perspectives for future work.

In more detail:

1.4 Overview 15

Chapter 2 is a more detailed but informal introduction to parsing and parsing

schemata.

The basic idea underlying our work is cast into the metaphor of the \primor-

dial soup" algorithm. Rather than worrying about data structures, control

structures and communication structures we throw a large enough supply of

elementary trees into a big pot, let these oat around, meet, interact and

form larger trees, until after a very long (perhaps in�nite) time all potential

parse trees will have been formed. Schemata for sensible parsing algorithms

can be derived by imposing various kinds of restrictions on this very general,

but equally impractical approach to parsing.

Chapter 2 does not presuppose any knowledge of linguistics and computer

science (but the reader who is not familiar with mathematics will not �nd it

easy reading).

Chapters 3{6 give a theory of parsing schemata for context-free grammars.

Most of what is done informally in chapter 2 is done more thoroughly in

chapter 3. A notion of parsing schemata is developed in which partial parse

trees constitute the intermediate results delivered by a parser.

In Chapter 4, trees are replaced by items. An item can be seen as a collection

of trees that share certain properties. We give two di�erent de�nitions of

items, one of a more theoretical and the other of a more practical nature. It

is in fact very convenient to use some items that are inconsistent with the

underlying theory, but it can be shown that this has no consequences for the

correctness of parsing schemata. After having dealt with these rather fun-

damental issues, some examples of realistic parsing schemata are presented

in 4.6.

Chapters 5 and 6 discuss relations between parsing schemata. Chapter 5

concentrates on re�nement (making smaller steps and producing more inter-

mediate results) and generalization (extending a parsing schema to a larger

class of grammars). Chapter 6 deals with �ltering , that is, making a parsing

schema more e�cient by discarding irrelevant parts. Both chapters are illus-

trated with lots of examples, many of them schemata of parsing algorithms

known from the literature. In section 6.5 a taxonomy of Earley-like parsing

schemata is presented.

Chapters 3{6 can be read on two levels. First and foremost, they constitute a

formal theory of parsing schemata. But somebody who is familiar with some

of the parsing algorithms that are discussed can get a fairly good picture of

what is going on by browsing through the many examples.

Chapters 7{9 extend parsing schemata to uni�cation grammars.

Chapter 7 is a short and easy to read introduction to uni�cation grammars for

computer scientists who have never had any involvement with computational

16 1. Introduction

linguistics.

Chapter 8 extends the formal theory of parsing schemata from context-free

grammars to (PATR-style) uni�cation grammars. We use a formalization

of feature structures that is somewhat di�erent from the formal-logical ap-

proach, but amounts to the same thing for all practical purposes. In order

to be able to specify transfer of features explicitly, we introduce a notion

of multi-rooted feature structures that describe the interrelations between

features of arbitrary sets of objects. Thus we obtain a neat formalism for

specifying parsers for uni�cation grammars.

For context-free grammar parsing it is pretty clear how a simple, adequate

(but perhaps not the most e�cient) algorithm can be obtained from a pars-

ing schema. This is not the case for uni�cation grammar parsing schemata.

In Chapter 9 we discuss some essential nuts and bolts of uni�cation grammar

parsing: uni�cation of feature structures, avoiding in�nite sets of predicted

items, and, last but not least, two-pass parsers that use some essential fea-

tures in a �rst pass and add all other features in a second pass.

For reading Chapters 7{9 one needs to have a basic understanding of the

parsing schemata notation, but no detailed knowledge of the material covered

in Chapters 3{6.

Chapters 10{11 are about Left-Corner (LC) and Head-Corner (HC) chart pars-

ers. These two chapters can be read as a single paper.

An HC parser does not process a sentence from left to right; it starts with

the most important words and �lls in the gaps later. Because of the non-

sequential way in which the HC parser hops through a sentence, its descrip-

tion is not easy, its correctness proof much less so. LC parsers are interesting

in their own right (and the question whether LC or HC parsing is more e�-

cient is still open for debate). But the main point we have to make about LC

parsing | that it can be cast into a chart parser | has in fact been made

already in Section 4.6. The reason to include Chapter 10 here is that, once

it is understood how an LC parser can be de�ned and proven correct, we can

understand the rather more complicated HC case as a pretty straightforward

generalization of the LC case.

Chapters 10 and 11 exemplify that parsing schemata can be used to get

a formal grip on highly complicated algorithms. This is the �rst ever HC

parser that has been proven correct.

Chapters 12{13 place Generalized LR parsing within our framework. These two

chapters can be read as a single paper.

In Chapter 12, as an example of how non-item-based parsers �t into our

framework, we discuss Tomita's Generalized LR parser and uncover the un-

1.4 Overview 17

derlying parsing schema. Ignoring a few trivial details, one can say that this

is identical to the parsing schema of an Earley parser.

In Chapter 13, this last insight is used to cross-breed Tomita's parser with

a parallel version of Earley's parser. Test results of this so-called Paral-

lel Bottom-up Tomita parser show a moderate speed-up compared to the

original Tomita parser.

Chapter 14 discusses parsing by boolean circuits.

This chapter gives another, very di�erent application of parsing schemata. A

maximally parallel implementation of a parsing schema can be obtained by

executing, at every step, all applicable computations at the same time. The

control structure of such an algorithm is not dependent on the particular

sentence, hence (if we assume a maximum sentence length) the algorithm

can be coded entirely into hardware. Any parsing schema for any grammar

can be coded into a boolean circuit in this way.

As a nontrivial example, we apply this to Rytter's logarithmic-time parallel

parsing algorithm. This leads to a simpli�cation in the algorithm (and the

proof of its correctness), while the complexity bounds of the boolean circuit

conform to those known for other parallel machine models.

Chapter 15 is about natural language and natural language processing.

This is the only chapter that is not concerned with parsing schemata. I

will try to give an outlook beyond the narrow subject that is treated in

this book and discuss some fundamental issues and perspectives in natural

language processing. This chapter has the character of an essay, rather than

a scienti�c report.

Chapter 16, �nally, gives some conclusions and prospects for future research.

18 1. Introduction

Chapter 2

The primordial soup

framework

The \primordial soup algorithm" [Janssen et al., 1992] is a metaphor for the more

abstract notion of a parsing schema. One speci�es which trees can be constructed

during parsing and how these can be constructed; one does not specify how these

trees are to be searched for and stored.

This chapter has been written with a dual purpose. The reader with some

knowledge of parsing theory should get through this chapter rather quickly and

pick up the intuition of what is going to be formalized in the next two chapters.

The non-involved reader may get some understanding of the subject of this book.

She should be warned, however, that Section 2.3 is rather tough.

Section 2.1 gives a brief introduction to parse trees and grammars. The general

idea of parsing schemata is worked out in 2.2. Some primordial soup variants

that resemble well-known parsing algorithms are introduced in 2.3; extensions and

related approaches are mentioned in 2.4. Section 2.5, �nally, gives a brief sketch of

the limitations of the primordial soup framework and introduces the generalization

to parsing schemata.

2.1 Context-free parse trees

An example of a parse tree in shown in Figure 2.1. It gives a complete syntactic

analysis of the sentence

the cat catches a mouse:

19

20 2. The primordial soup framework

We know from school that this sentence can be decomposed into subject, verb

and object. The subject \the cat" and object \the mouse" both belong to a syntac-

tic category that is called noun phrase (NP). The verb and object are grouped (for

reasons that do not matter here) into a category verb phrase (VP). So the sentence

(indicated S) can be decomposed into NP and VP , the VP can be decomposed

into *verb and NP . Both NP 's can be decomposed as well: into a determiner and

a noun. (Determiners comprise a class of words that contain, among others, the

articles.)

*det *noun *verb *det *noun

the cat catches a mouse

NP

JJ

NP

JJ

VP

@@�
�
��

SXXXX�
�

�
��

Figure 2.1: a simple parse tree

A structured decomposition of a sentence as in Figure 2.1 is called a parse tree.

A tree is composed of nodes and edges. The top node (trees grow upside-down in

mathematics) is called the root and the bottom nodes the leaves of the tree. The

leaves of a parse tree are labelled with the words from the sentence, the other nodes

with syntactic categories. The categories in lower case marked with an asterisk

are lexical categories (also called pre-terminal categories). These can be found by

looking up words in a lexicon. A grammar describes possible decompositions of

syntactic categories. A very simple grammar that su�ces to parse our example

sentence is the following grammar G1:

S ! NP VP ;

NP ! *det *noun ;

VP ! *verb NP :

This is an extraordinarily small grammar; a reasonable grammar for English con-

tains a few hundred rules.1 Grammar rules are called productions or rewrite rules.

The left-hand side of a production can be rewritten into the right-hand side (and

a sentence decomposed accordingly). Grammar G1 has the property that it is

binary branching : the right-hand side of every production consist of 2 symbols.

This is not necessarily the case; grammars may also have productions with 0, 1,

1See, for example, the context-free grammars for English as given by Sager [1981] and Tomita

[1985].

2.1 Context-free parse trees 21

3, or more right-hand side symbols. But there are some very simple and elegant

parsing algorithms that work only for binary branching grammars.

Next, we will introduce a grammarG2. This grammar is slightly more involved,

but still so simple that only very few sentences can be parsed with it. Consider

the sentence

the boy saw the man with a telescope:

The words \with a telescope" form a type of constituent that we have not seen

above, called prepositional phrase (PP). The prepositional phrase can be decom-

posed into a preposition \with" and an NP \a telescope." The question arises,

how this PP must be inserted into the phrase \the boy saw the man" (which has

a parse tree similar to Figure 2.1). There are in fact two possibilities, that give

rise to two meaningful interpretations of the sentence. On the one hand one could

consider the PP as part of the object. Then we have an object noun phrase \the

man with the telescope" that can be decomposed by a production

NP ! NP PP :

Or, alternatively, we can see \with the telescope" as adding further detail to the

sentence \the boy saw the man,"2 so the complete sentence can be decomposed by

a production

S!S PP :

The grammar G2 is given by the following series of productions:

S ! NP VP

S ! S PP

NP ! *det *noun

NP ! NP PP

PP ! *prep NP

VP ! *verb NP :

It is left to the reader (and the non-specialist reader should really do so, to get

some feeling for context-free grammars and parse trees) to draw the two di�erent

parse trees for the sentence \the boy saw a man with a telescope."

2 There are some grammar formalisms (based on the notion of a dependency grammar , cf.
[Schubert, 1987]) that would link the prepositional phrase directly to the verb \saw." Recent
variants of dependency grammars are casting systems [van der Hoeven, 1993] and link grammars

[Sleator and Temperley, 1993]. In the context-free grammar formalism such an analysis is not
possible; it is prohibited that edges cross, hence \with a telescope" cannot be linked directly to

\saw".

22 2. The primordial soup framework

2.2 Primordial soup

We want to design a computer system that constructs all parse trees for some

grammar and an arbitrary string of words.3

We start with a very simple recipe, based upon the idea that large trees can

be composed from smaller trees. A larger tree can be constructed by grafting the

root of some tree onto a leaf of another tree. This can only be done, however, if

both nodes carry the same label. We begin with an abundant supply of elementary

trees. These come in two kinds:

� elementary trees representing the words with their lexical categories,

� elementary trees representing the productions of the grammar.

As time proceeds, trees oat around, meet and interact, forming larger and larger

trees. If the sentence is well-formed, parse trees will emerge in the primordial soup

after a long, but �nite amount of time.

Let us consider the sentence \the cat catches a mouse" again, and grammar

G1 as in Section 2.1. The trees that are present in the initial primordial soup are

shown in Figure 2.2 (each di�erent tree is shown only once, but one should imagine

a su�ciently large number of copies of each tree). The words are annotated with

their position in the string, so as to remember the word order. These trees oat

around and bump into other trees. Upon such a collision, two trees may stick

together. If the root of a tree carries the same label as the leaf of the other tree,

the �rst tree can be grafted onto the second one. The root and leaf node with the

same label are merged into a single node. An example of tree composition is given

in Figure 2.3.

We have stated that the primordial soup contains an abundant number of

elementary trees. Hence, as many copies of larger trees can be made as needed. A

rather more e�cient way to simulate this in a computer system is to keep single

copies of each tree and make combinations of trees nondestructively . That is,

the new tree is added to the current set of trees, but the trees from which it is

constructed also remain present. Thus, in a computer simulation of the primordial

soup, we start with an initial set of trees that contains only a single copy of every

di�erent kind of tree. For all possible combinations of trees in the set it is tried

whether new trees can be produced. These new trees are added to the set (while

the trees from which they are constructed also remain present). For each new tree,

subsequently, all possible combinations with other trees are tried, and so on. This

process stops if a situation is reached where all trees that can be produced are

contained in the set already. There is no guarantee, in general, that this process

ever halts, it might well be the case that an in�nite number of trees can be created

3A string of words is called a sentence only if it is well-formed according to the grammar. If

no parse trees are found, then the string is not a sentence.

2.2 Primordial soup 23

NP VP

S

JJ
*det *noun

NP

JJ
*verb NP

VP

JJ

*det

the1

*det

a4

*noun

cat2

*noun

mouse5

*verb

catches3

Figure 2.2: The initial primordial soup for \the cat catches a mouse"

*det *noun

the1

NP

JJ

NP

*verb NP

catches3

VP

JJ

S

@@��

| {z }

*det *noun *verb NP

the1 catches3

NP

JJ

VP

JJ

S

Q
QQ

�
�

�

Figure 2.3: A root is uni�ed with a leaf of another tree

24 2. The primordial soup framework

nondestructively from the elementary trees we started with. But we will not be

bothered by that problem right now; for grammarG1 it is clear that the primordial

soup will halt.

Whether the search for new trees is done systematically or at random, sequen-

tial or parallel, is not of great concern to us. As the primordial soup framework is

primarily meant to model parallel parsing, the simplest interpretation is that at

each step all combinations of all trees present in the soup are tried for a match.4 In

this way, the number of steps that is needed until no more new trees can be added

is the minimum number of steps in a parallel implementation with unlimited re-

sources. Such details will be discussed in Chapter 14, and for the next half a dozen

chapters we will not be concerned with any implementation. The more interesting

matter here (that will occupy us up to chapter 6) is, what the �nal contents of the

primordial soup looks like, once every possible tree has been constructed. Which

particular search strategy and storage structure is used to compute this �nal con-

tents is irrelevant, as long as every tree that can be constructed eventually will be

found.

In the remainder of this chapter we will use a simple, linear notation for trees.

If we have a tree with root labelled A and yield (i.e. the sequence of labels of

leaves, from left to right) �, we may denote such a tree by the formula hA ; �i.

The trees in �gure 2.3, for example, can be denoted by

hNP ; the1 *nouni;

hS ; NP catches3 NP i;

hS ; the1 *noun catches3 NPi:

In this notation we abstract from the internal structure of the trees. Tree com-

position (here) only involves roots and leaves, hence a notation where all internal

nodes and edges are simply replaced by the symbol ; is adequate and simple |

and saves a lot of paper. Only for elementary trees we write !, rather than ;,

indicating that the yield is produced directly by the root and that there are no

internal nodes;5 e.g.

hNP!*det *nouni:

Next, we introduce an operator6 � that denotes tree composition. In Figure 2.3,

the construction of the large tree is licensed by the equality

4This resembles the \Unity" approach of Chandy and Misra [1988] for initial speci�cation of
parallel systems.

5This convention has no particular relevance here, but anticipates a more sophisticated linear
tree notation that will be introduced in Chapter 3.

6 In arithmetics we use operators like +, � and � to calculate sums, di�erences, and products
of numbers. If a, b, and c are numbers then so are a+ b and (a+ b)� c. A composition operator

on trees, in a similar way, gives us a kind of tree calculus. If �, �, and � are trees, we can write
also write down trees � � � or (� � �) � � . (Note, however, that | unlike arithmetic operators

| tree composition is not de�ned for all pairs of trees.)

2.2 Primordial soup 25

hS ; NP catches3 NPi � hNP ; the1 *noun i

= hS ; the1 *noun catches3 NPi:

A composed tree � � � is de�ned only if some leaf of tree � and the root of tree

� are labelled with the same symbol.

If more than one leaf of � corresponds to the root of � , then the notation � � �

is ambiguous. Formally, the ambiguity of � can be eliminated by writing �1 for

tree composition with the �rst matching leaf, �2 for tree composition with the

second matching leaf, and so on. A tree composition � �i � is de�ned only if

yield(�) contains at least i occurrences of root(�). In most cases it is clear what

is meant and we do not bother to write the index i.

Note that for the �rst two trees in Figure 2.3 it holds that

hS ; NP catches3 NPi �2 hNP ; the1 *noun i

= hS ; NP catches3 the1 *noun i:

There is a problem, however, with the tree hS ; NP catches3 the1 *nouni. The

construction of this tree is perfectly legal according to the rule of tree composition.

But this tree can never be of any use for the construction of a parse tree, because

the word order is violated. If we allow such trees to occur in the primordial

soup, then not only the parse trees for the given string will emerge, but also the

parse trees of all other strings that can be formed from the same words. Hence

we introduce a special constraint, making sure that only the requested string is

parsed and no other string.

Word order constraint: the position numbers that occur as markings of leaves

of a tree must be increasing from left to right.

Hence a tree hS ; the1 *noun catches3 NPi is allowed by the word order con-

straint, but a tree hS ; NP catches3 the1*noun i is discarded and should not enter

into the primordial soup. As a consequence, the only full parse tree that eventually

will appear is

hS ; the1 cat2 catches3 a4 mouse5i:

Let us now reconsider grammar G2 (cf. page 21) which includes prepositional

phrases as well. \The cat catches a mouse" can be parse with grammar G2 as well

(it contains all productions of G1), but we are faced with a problem. An in�nite

number of trees can be constructed, hence (a simulation of) the primordial soup

does not �nish. Among others, the following series of trees will emerge:

hNP ! NP PP i

hNP ; NP *prep NPi

hNP ; NP *prep NP PP i

hNP ; NP *prep NP *prep NPi

hNP ; NP *prep NP *prep NP PPi

etc.

26 2. The primordial soup framework

The word order constraint only a�ects leaves that are marked with position num-

bers, i.e., words from the string. But we can continue creating larger and larger

trees without ever adding a single word. For grammar G2 we guarantee that the

primordial soup process will halt by imposing a second constraint.

Width constraint: the yield of a tree may not be larger than a given �xed size.

Which particular size is chosen is not important, the most natural choice is the

length of the sentence.7 For any acyclic
8 grammar and any string, the width

constraint guarantees that only a �nite number of di�erent trees will emerge. For

cyclic grammars, the depth of a tree is not bounded by the width, hence an in�nite

number of trees will be created. One could argue that this is right, because a cyclic

grammar, in general, yields an in�nite number of parse trees for a sentence. When

all parse trees have to be delivered (and we do not use any sophisticated techniques

to represent an in�nite set of tree by a �nite data structure) any parsing algorithm

will run forever.

Let us now de�ne the primordial soup parser as (an abstraction of) a parsing

algorithm without data structures and control structures. That is, we de�ne

� which kind of trees may occur in the primordial soup;

� an initial set of trees;

� a composition rule that allows adding new trees to a given set of trees.

Before we give the de�nition, a last bit of notation is needed. As shown in Fig-

ure 2.2, the string is represented by words annotated with their position and lexi-

cal category. As a general notation for this kind of initial trees we write ha!aii,

where ai denotes the i-th word of string. The underlining is to distinguish the

words proper from their lexical categories.9 If ai is lexically ambiguous, there will

be several initial trees; one may also �nd hb!aii, hc!aii.

De�nition 2.1 (Primordial soup | simple version)

For the sake of simplicity we assume that the grammar G is acyclic and contains

no empty productions (i.e. productions with zero right-hand side symbols). We

set the maximum with of a tree to the length of the string that is to be parsed.

The primordial soup for a grammar G and an arbitrary string of words is de�ned

as follows.

7For grammars with empty productions (the right-hand side has 0 symbols) a certain over-

size could be allowed; the length of the yield may shrink by adding an empty production to a
nonterminal leaf.

8 A grammar is cyclic if a symbolA can be rewritten toA by applyingone or more productions;
otherwise a grammar is acyclic.

9For a natural language parser, it is much more convenient to start parsing from the lexical
categories of the words, rather than the words themselves. So, in most descriptions of parsing

algorithms, the symbol ai denotes a lexical category, rather than a \real" word.

2.3 Restricted versions of the primordial soup 27

� The domain of the primordial soup comprises are well-formed trees according

to the grammar G that obey both the word order constraint and the width

constraint.

� The initial set of trees contains a tree hA!�i for every production A!� in

grammar G and ha!aii for every lexical category of the i-th word.

� If trees � and � are present in the current set of trees and the tree � � �

exists within the domain speci�ed above, then then � � � may be added to

the set of trees.

A formal de�nition of well-formed trees is given later (cf. De�nition 3.5). Here it

should be clear from the examples what is meant. 2

Implicitly de�ned by the primordial soup speci�cation is the �nal set of trees.

This �nal set, in a way, gives an account of all the intermediate results that are

created by a parser in order to �nd the parse trees. How this set is computed

(sequentially or parallel? systematically or at random?) we do not know at this

level of abstraction. This is the central idea.

More restricted versions of the primordial soup | in which the �nal set contains

only those intermediate results that are computed by a sensible parsing algorithm

| can be de�ned by

� restricting the domain of trees that is allowed to occur in the primordial soup

� adding restrictions to tree composition operators.

These two kinds of restrictions are usually interchangeable. In the above version of

the primordial soup, for example, the domain excludes trees that violate the word

order constraint or width constraint. We could have given an alternative de�nition

in which the domain of the primordial soup simply consists of all well-formed trees

but the tree composition rule is de�ned only for those cases where none of the

constraints if violated. The de�nition is di�erent but the �nal set of trees that is

implied by the de�nition is the same.

2.3 Restricted versions of the primordial soup

Above we have de�ned the most general but also most ine�cient variant of the

primordial soup. Even for small grammars and small sentences, the �nal set of

trees will be huge. We will now give a few examples of more e�cient variants of

the primordial soup. The reader who is familiar with parsing theory will recognize

that these more sensible versions are related to the algorithms of of Cocke-Younger-

Kasami (CYK) and Earley. We also give a version of Rytter's algorithm, which is

28 2. The primordial soup framework

rather hard to comprehend in its original form, and rather more easy to understand

in the primordial soup format.

Before we de�ne further variants of the primordial soup we have to be more

speci�c about the terminology.

We write a; b; : : : ; for lexical categories;

we write A;B; : : : ; for nonterminals (i.e., other syntactic categories),

we write X;Y; : : : ; for symbols for which it does not matter whether they

refer to a nonterminal or to a lexical category;

we write ai for the i-th word of the sentence; ai is called a marked terminal ;

we write �; �; : : : ; for strings of nonterminals, lexical categories and/or

marked terminals;

we write " for the empty string.

Furthermore, we de�ne the following species of trees.

� A complete tree is a tree of the form hA; ai : : : aji.

� A production tree is a tree hA!�i with A!� a production of the grammar.

Schematic drawings of a complete tree and a production tree for a binary pro-

duction are shown in �gure 2.4. A special subspecies of complete trees is worth

mentioning.

� A terminal tree is a tree of the form ha!aii.

�
�
�
�

A
A
A
A

ai+1 : : :aj

A

�
�
A
A

X Y

A

Figure 2.4: A complete tree and a (binary branching) production tree

In the CYK version of the primordial soup, only complete trees are constructed.

The initial set contains production trees and terminal trees (but terminal trees are

a subspecies of complete trees). Hence we limit the domain to production trees

and complete trees. We will assume here that the grammarG is binary branching,

i.e., every production has two symbols at its right-hand side. Both grammars G1

and G2 as de�ned in Section 2.1 are binary branching.

2.3 Restricted versions of the primordial soup 29

Suppose that we have a production tree hA!BCi and that we have complete

trees hB ; ai+1 : : :aji and hC ; aj+1 : : :aki. From these we can construct a

larger tree hA ; ai+1 : : :aki. But, since we have restricted the allowed types of

trees to production trees and complete trees, putting these 3 trees together must be

done in a single operation. If the construction is done in two steps, the intermediate

product belongs to a species that is not allowed within the domain. Hence we

replace the binary composition operator by a ternary composition operator denoted
3

�, as follows.

�

3

� �; � is de�ned for binary production trees � and complete trees �; � if

yield(�) = root(�)root(�):

�

3

� �; � denotes the tree that is constructed by grafting � onto the �rst

(left) leaf and � onto the second (right) leaf of �.

Example 2.2 (Primordial soup | CYK version)

Let G be a binary branching grammar. The CYK version of the primordial soup

for G and an arbitrary string of words is de�ned as follows.

� The species of trees in the domain are restricted to production trees and

complete trees.

� The initial set of trees contains a tree hA!XY i for every production A!XY

in grammar G and ha!aii for every lexical category a of the i-th word.

� If trees �; �; � are in the current set and �

3

� �; � is de�ned, then �

3

� �; �

may be added to the set.

The �nal set for \the cat catches a mouse", according to grammar G2, is shown in

Figure 2.5. 2

As a second example, we will make a minor variation to the CYK version of the

primordial soup. This allows us to de�ne (an abstraction of) of Rytter's algorithm

[Rytter, 1985], [Gibbons and Rytter, 1988], which, in its original form, is much

more di�cult to understand than CYK. We de�ne an additional species of trees:

An almost-complete tree is a tree of one of the following forms:

hA; Xi;

hA; Xai+1 : : :aji;

hA; ai+1 : : :ajXi;

hA; ai+1 : : :ajXak+1 : : :a`i

with i < j < k < l, where applicable.

30 2. The primordial soup framework

production trees: hS!NP VPi

hS!S PPi

hNP!*det *noun i

hNP!NP PP i

hVP!*verb NPi

hPP!*prep NPi

terminal trees: h*det!the1i

h*noun!cat2i

h*verb!catches3i

h*det!a4i

h*noun!mouse5i

other complete trees: hNP ; the1 cat2i

hNP ; a4 mouse5i

hVP ; catches3 a4 mouse5i

hS ; the1 cat2 catches3 a4 mouse5i

Figure 2.5: The �nal set of trees in a CYK primordial soup

An almost-complete tree contains exactly one leaf that is not a marked terminal.

If the grammar is binary branching, trees of the form hA; Xi do not exist.

When we extend the domain with almost-complete trees, the tree construction

operator of CYK can be simpli�ed. Suppose, again, that we have a production

tree � = hA!BCi and complete trees � = hB ; ai+1 : : : aji and � = hC ;

aj+1 : : :aki. Then it clearly holds that

�

3

� �; � = (� � �) � � = (� � �) � �:

Both intermediate results

(� � �) = hA; ai+1 : : :ajCi;

(� � �) = hA; Baj+1 : : :aki

are almost-complete.

By allowing almost-complete trees and binary tree composition we have created

another possibility to obtain new trees. If the set of trees contains, for example

hA; ah+1 : : :aiBa`+1 : : : ami;

hB ; ai+1 : : :ajCak+1 : : : a`i

2.3 Restricted versions of the primordial soup 31

then these can be combined into a third almost-complete tree

hA; ah+1 : : :ajCak+1 : : :ami:

Hence three types of tree construction can take place, which can be classi�ed

according to the species of trees involved, as follows:

� a production tree and a complete tree are merged into an almost-complete

tree, for example (cf. Figure 2.6(i)):

hVP!*verb NPi � hNP ; a4 mouse5i = hVP ; *verb a4 mouse5i

� an almost-complete tree and an almost-complete tree are merged into an

almost-complete tree, for example (cf. Figure 2.6(ii)):

hS ; the1 cat2VPi � hVP ; *verb a4mouse5i

= hS ; the1 cat2*verb a4mouse5i

� an almost-complete tree and a complete tree are merged into a complete

tree, for example (cf. Figure 2.6(iii)):

hS ; the1 cat2*verb a4mouse5i � h*verb!catches3i

= hS ; the1 cat2 catches3 a4mouse5i

A description of Rytter's algorithm typically de�nes three operators that corre-

spond to the three cases of tree combination outlined here. In the primordial

soup version, these three operators need not be de�ned explicitly; they are a con-

sequence of the domain de�nition and the general composition rule based on �.

Example 2.3 (Primordial soup | Rytter version)

Let G be a binary branching grammar. The Rytter version of the primordial soup

for G and an arbitrary string of words is de�ned as follows.

� The species of trees in the domain are restricted to

{ production trees,

{ complete trees,

{ almost-complete trees.

� The initial set of trees contains a tree hA!XY i for every production A!XY

in grammar G and ha!aii for every lexical category a of the i-th word.

� If �; � are in the current set and � � � is de�ned within the domain then

� � � may be added to the set.

32 2. The primordial soup framework

�
�
A
A

VP

*verbNP

�

�
�
�
�

A
A
A
A

NP

a4mouse5

=

�
�
�
�
�
�

A
A
A
A
A
A

A
A

VP

*verb a4mouse5

(i) a production tree and a complete tree yield an almost-complete tree

�
�
�
�
�
�

A
A
A
A
A
A

�
�

S

the1 cat2 VP

�

�
�
�
�
�
�

A
A
A
A
A
A

A
A

VP

*verb a4mouse5

=

J
J
J
J
J
J
JJ

 JJ

S

*verb

the1 cat2 a4mouse5

(ii) two almost-complete trees yield an almost-complete tree

J
J
J
J
J
J
JJ

 JJ

S

*verb

the1 cat2 a4mouse5

�

�
�
�
�

A
A
A
A

*verb

catches3

=

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

S

the1 cat2 catches3 a4mouse5

(iii) an almost-complete and a complete tree yield a complete tree

Figure 2.6: Some tree compositions according to Rytter

2.3 Restricted versions of the primordial soup 33

production trees: as in Figure 2.5

terminal trees: as in Figure 2.5

almost-complete trees: hNP ; the1 *nouni

hNP ; *det cat2i

hNP ; the1 cat2 PP i

hNP ; a4 *nouni

hNP ; *det mouse5i

hNP ; a4 mouse5 PPi

hVP ; catches3 NP i

hVP ; catches3 a4 *nouni

hVP ; catches3 *det mouse5i

hVP ; *verb a4 mouse5i

hS ; the1 cat2 VPi

hS ; the1 cat2 catches3 NPi

hS ; the1 cat2 catches3 a4 *nouni

hS ; the1 cat2 catches3 *det mouse5i

hS ; the1 cat2 *verb a4 mouse5i

hS ; NP catches3 a4 mouse5i

hS ; the1 *noun catches3 a4 mouse5i

hS ; *det cat2 catches3 a4 mouse5i

hS ; the1 cat2 catches3 a4 mouse5 PPi

(non-terminal) complete trees: hNP ; the1 cat2i

hNP ; a4 mouse5i

hVP ; catches3 a4 mouse5i

hS ; the1 cat2 catches3 a4 mouse5i

Figure 2.7: The �nal set of trees in a Rytter primordial soup

34 2. The primordial soup framework

The �nal set of trees for our simple example sentence and grammar G2 is shown

in Figure 2.7. 2

Rytter's algorithm can compute all parses very fast, at the expense of rather

large number of resources.10 In Chapter 14 we will show how this algorithm can

be implemented as a boolean circuit.

Next we turn to Earley's algorithm.11 The grammar does not have to be

binary branching and can be any context-free grammar. But the primordial soup

stabilizes into a �nal state only if the grammar is acyclic. For cyclic grammars,

there is no �nal state and an in�nite number of trees will be created, including the

(generally) in�nite number of parse trees for a sentence. For the Earley version of

the primordial soup we de�ne another species of trees.

An Earley tree is a tree hA ; ai+1 : : : aj�i having subtrees �1; : : : ; �k such

that

A!root(�1) : : : root(�k)� is a production of the grammar, and

yield(�1) : : :yield(�k) = ai+1 : : :aj.

A general sketch of an Earley tree is shown in Figure 2.8. The Earley tree has two

important subspecies that have been de�ned already:

a production tree is an Earley tree with k = 0;

a complete tree is an Earley tree with � = ".

If both � and � � � are Earley trees then � must belong to the subspecies of

completed trees. Thus, if a new tree � � � is added to the set of trees, we can

distinguish two cases:

hA; ai+1 : : :aja�i � ha!aj+1i = hA; ai+1 : : : aj+1�i

which is called scan by Earley, and

hA; ai+1 : : :ajB�i � hB ; aj+1 : : :aki = hA; ai+1 : : : ak�i

which is called complete.

As with Rytter, the division into operators involving di�erent types of trees

need not be speci�ed explicitly. It is a consequence of the restriction on the domain.

10For a sentence of length n, the �nal set of trees is computed in O(logn) steps, using O(n6)
processors on a parallel random access machine.

11Note, however, that this is the bottom-up version of Earley, in which the predict operator is

absent. Parsing can be started at any position in the string, independently of the left context.
In. Chapter 4 we will de�ne a parsing schema for the conventional Earley algorithm, proceeding

left-to-right and making use of top-down prediction.

2.3 Restricted versions of the primordial soup 35

ai+1 : : : aj

A

@
@

HHHH
�

: : :

Figure 2.8: An Earley tree

production trees: as in Figure 2.5

terminal trees: as in Figure 2.5

Earley trees: hNP ; the1 *noun i

(excluding production trees hNP ; the1 cat2 PP i

and complete trees) hNP ; a4 *nouni

hNP ; a4 mouse5 PPi

hVP ; catches3 NP i

hS ; the1 cat2 VPi

hS ; the1 cat2 catches3 a4 mouse5 PP i

(non-terminal) complete trees: hNP ; the1 cat2i

hNP ; a4 mouse5i

hVP ; catches3 a4 mouse5i

hS ; the1 cat2 catches3 a4 mouse5i

Figure 2.9: The �nal set of trees in an Earley primordial soup

36 2. The primordial soup framework

Example 2.4 (Primordial soup | Earley version)

Let G be an arbitrary context-free grammar. The Earley version of the primordial

soup for G and an arbitrary string of words is de�ned as follows.

� The domain is restricted to Earley trees.

� The initial set of trees contains a tree hA!�i for every production A!� in

grammar G and ha!aii for every lexical category a of the i-th word.

� If �; � are in the current set and � � � is an Earley tree then � � � may be

added to the set.

The �nal set of trees of our example sentence and grammar G2 is shown in Fig-

ure 2.9. 2

2.4 Extensions and related formalisms

The only way in which trees can be merged, so far, is by unifying a leaf of one

tree with the root of another. More complicated merges could be allowed as well.

In Figure 2.10 an example of a merge is shown in which larger overlapping parts,

rather than single nodes, are combined so as to create a larger tree.

For most algorithms such merges are not necessary (and hence, for the sake

of e�ciency, should better not be considered). If a tree can be created by a

complicated merge, the same tree can be created by simple leaf-to-root merges

from the same elementary material that was present in the initial primordial soup.

Janssen et al. [1991] give an example of a primordial soup variant that makes

essential use of other than leaf-to-root merges. This variant describes the parsing

algorithm of De Vreught and Honig [1989]. The basic idea is the following.

Suppose there is a production tree hA!��1�2i. A tree may emerge with �1 fully

expanded; say

hA; �ai+1 : : :aj�2i:

If, at some moment in time, the primordial soup also contains a tree

hA; ��1aj+1 : : :aki

in which �2 has been fully expanded, these trees can be merged into a single tree

hA; �ai+1 : : :aki:

The algorithm of de Vreught and Honig will be treated extensively in Chapter 6,

hence we don't go into more detail here.

An operation on trees that �ts very well to the primordial soup metaphor is

tree adjoining . A special kind of tree, called an adjunct , is inserted in the middle

2.4 Extensions and related formalisms 37

*det *noun *verb NP

the1 catches3

NP

JJ

VP

JJ

S

Q
Q
Q

�
�

�
*verb

*det *noun

a4

NP

JJ

VP

@@��

| {z }

*det *noun *verb *det *noun

the1 catches3 a4

NP

JJ

NP

JJ

VP

@@�
�
��

SXXXX�
�

�
��

Figure 2.10: A merge over corresponding subtrees

of another tree. This is illustrated in Figure 2.11. A tree is \un-merged" into two

trees by splitting a node into a leaf of the outer tree and the root of the inner tree.

Then the root of the adjunct is uni�ed with the cut leaf of the outer tree and the

root of the inner tree is uni�ed with a leaf of the adjunct. An adjunct can be any

tree that has a leaf carrying the same label as its root. This leaf is called the foot

of the adjunct.

Tree adjoining grammars (TAGs), de�ned by Joshi et al. [1975, 1991], are per-

haps most easily described in the primordial soup framework. For the construction

of a parse trees in a TAG two kinds of operations can be used: composition, which

is identical to our leaf-to-root merging and tree adjoining as explained above.

Furthermore, the nodes in the initial trees may carry labels that describe whether

adjoining over that node is forbidden, mandatory or optional. In a Lexicalized

TAG [Schabes and Joshi, 1991], moreover, it is demanded that every elementary

tree contains at least one terminal. If there is a lexicon that provides elementary

trees for every word, then this implies that the entire grammar is contained in the

lexicon.

The primordial soup is not the �rst chemical metaphor for computation, or,

38 2. The primordial soup framework

J
J
J
J
J
J

�
�
@
@

�
A

�
�
�
�

A
A
A
A

�
A

�

A

| {z }

J
J
J
J
J
J

�
�

@
@

�
�
�
�

A
A
A
A

�
�

@
@

�
A

�
A

Figure 2.11: Tree adjoining

more speci�cally, parsing. A \Chemical Abstract Machine" is de�ned by Berry

and Boudol [1990] as an abstract model of asynchronous concurrent computation

(a better name would have been an \Abstract Chemical Machine"). There are two

kinds of chemical reactions to create compounds: the �rst one is reversible, com-

pounds may spontaneously decompose again. Composition is irreversible when

two ions with di�erent valencies meet.

A chemical metaphor in parsing is the \test-tube model" used by Kempen and

Vosse [1990]. The purpose, here is to create a single parse tree (the most likely

one) for a given sentence. It is essential that composition is destructive, i.e., a

molecule that is initially present can be used only in one compound at the time.

Compounds that do not �nd other material to react with will decompose after

some time.

Willems [1992] uses chemical composition as a metaphor for the semantics of nat-

ural language described by means of knowledge graphs.

2.5 From primordial soup to parsing schemata

We have introduced the primordial soup as a metaphor for parsing schemata. In

Chapters 3 and 4, parsing schemata are introduced in an abstract and rather

2.5 From primordial soup to parsing schemata 39

more formal manner. Some of the technical details di�er, but the general idea is

identical. One speci�es

� a set of objects that constitute a domain

� an initial set of objects

� rules that allow a set of objects to be extended with new objects.

Implicitly speci�ed by such a schema is a set of valid objects; the subset of the

domain that can be derived from the initial set following the rules. This set of

valid objects may be �nite or in�nite. How such a set can be computed and stored

is not relevant at this level of abstraction.

The primordial soup metaphor strongly suggests that derivation of trees is

compositional ; a new tree is created by merging separately existing trees into a

single structure. It violates the laws of chemistry when a tree can be derived from

existing trees with which it has nothing in common. Similarly, the metaphor does

not allow that trees are created spontaneously out of nothing. Yet it is rather easy

and sometimes convenient to introduce a unary composition operator
1

� which

states that � can be added to soup | irrespective of its current contents | if
1

� �

holds. Such constructs are at odds with the intuition presented here, but turn out

to be useful for the speci�cation of parsing schemata.

An example of a rule that does not quite �t the primordial soup metaphor (and

which we have carefully circumvented above) is the predict operation in Earley's

algorithm. In Chapter 4 this will be treated properly. Hence, as any metaphor,

the primordial soup metaphor is very useful to convey a super�cial intuition but

does not �t quite so well when one digs deeper into the theory.

Nevertheless, the general idea of parsing schemata as an intermediate level of

abstraction between grammars and algorithms has been clari�ed su�ciently by

the examples given above. All that is left is to work out the formal and practical

details.

40 2. The primordial soup framework

Part II

FOUNDATION

41

Chapter 3

Tree-based parsing schemata

The primordial soup algorithms of Chapter 2 served to provide some intuition

of what parsing schemata do. We specify a domain of trees, an initial set of

trees and deduction steps that allow to add new trees to a current set of trees.

Control structures and data structures must be added to turn these speci�cations

into sensible algorithms (and, for parallel algorithms, communication structures as

well). We will now develop a formal theory of what we have been doing informally.

Furthermore (as we have argued in Section 2.5), the primordial soup metaphor

carries some connotations that should not restrict the kind of parsing schemata

that we intend to de�ne.

A full-edged parsing schema has a set of items, rather than trees, as its

domain. But in order to develop a general theory of item-based parsing schemata

one must �rst have a notion of what an item is. We will tackle one problem at

the time. In this chapter we give a formal treatment of parsing schemata based

on trees. In Chapter 4, subsequently, we will investigate the notion of an item

and add that to the formalism. Having de�ned a general formalism for parsing

schemata, we will study in Chapters 5 and 6 how di�erent parsing schemata are

related and how schemata can be transformed into other schemata.

In Section 3.1 we recall the notion of a context-free grammar and related stan-

dard de�nitions in parsing theory. The reader who is familiar with this theory

should still glance through it; notations di�er a lot in the literature, and here we

introduce notational conventions that are used throughout the remainder of this

book. Furthermore, a practical linear notation for trees is introduced (this is an

extension of the notation already employed in Chapter 2).

A tiny extension to the standard theory of context-free grammars is made in

3.2. If one constructs a parse, this involves two di�erent kinds of operations: con-

structing trees and verifying that leaves of these trees match words in the sentence.

43

44 3. Tree-based parsing schemata

In a parsing schema we want to do everything in terms of trees; hence matching

that a predicted word does indeed occur in the string will be de�ned as a tree op-

eration as well. This extension is needed for a formal theory of parsing schemata

but, as we will see in subsequent chapters, hardly relevant for the description of

schemata of practical algorithms.

In 3.3 we de�ne logical deduction systems. A parsing system for a given gram-

mar and a given string is just such a deduction system. A parsing schema, then, is

a more abstract object that can be instantiated to a parsing system by providing

it with a grammar and a string. Parsing schemata are introduced in Section 3.5.

An interesting property of parsing schemata is correctness. One should be able

to investigate whether a given parsing schema deduces the right parse trees (and

only those). To that end, we de�ne enhanced deduction systems in 3.4, for which

an appropriate notion of syntactic correctness can be expressed. Parsing systems

in 3.5 are de�ned as enhanced deduction systems.

The use of deduction systems as a foundation of parsing schemata might seem

to be inspired on the \parsing as deduction" approach of Pereira and Warren

[1980], [Pereira, 1983]. But, despite the fact that there are some deep correspon-

dences, this is not really the case. What we like to formalize here is an abstraction

of a chart parser .1 Deduction systems are chosen simply because they constitute

the most convenient formalism for our purposes.

3.1 Context-free grammars

We recall standard notions of formal language theory, that will be used throughout

the remainder of this book. Furthermore, we introduce a convenient linear notation

for trees that is somewhat more powerful than the notation used in Chapter 2.

De�nition 3.1 (strings)

Let X be an arbitrary set. We write X+ for the set of non-empty strings x1 : : :xk,

(k � 1) over X.

We write X� for the set of strings x1 : : : xk, (k � 0) over X. For j = i � 1, the

sequence xi : : : xj denotes the empty string. For j < i� 1, the notation xi : : :xj is

unde�ned. 2

De�nition 3.2 (context-free grammar)

A context-free grammar (CFG) is a 4-tuple G = (N;�; P; S) satisfying

1 Computer scientists who do not know the term chart parser may think of CYK and/or
Earley parsers, which are particular brands of chart parsers. The notion of a chart parser is in

fact not relevant for an understanding of the theory that is being developed here. In chapter
10, where we shift our attention to parsing algorithms, rather than underlying schemata, a very

simple, informal introduction to chart parsing will be given.

3.1 Context-free grammars 45

(i) the set of nonterminals N and the set of terminals � are alphabets taken

from some universal class of symbols Sym, N \� = ;;

(ii) the set of productions P consists of a �nite number of pairs (A;�) with

A 2 N , � 2 (N [�)�;

(iii) the start symbol S is a nonterminal symbol from N .

We write CFG for the class of context-free grammars. 2

De�nition 3.3 (notations)

(i) We write V for N [�.

(ii) Productions (A;�) are written as A!�.

(iii) We write

A;B;C; : : : for variables ranging over N ;

X;Y; : : : for variables ranging over V ;

a; b; : : : for variables ranging over �;

v; w; x; : : : for variables ranging over ��;

�; �; ; �; : : : for variables ranging over V �;

the empty string is denoted by ".

A string that is to be parsed is usually denoted a1 : : :an.

(iv) The relation) on V � � V � is de�ned by

�) � if there are �1, �2, A, such that

� = �1A�2, � = �1�2 and A! 2 P . 2

Using the notational conventions introduced in (iii), we need not state from which

set an element is taken when we talk about some (arbitrary) a, A, �, : : :, making

the notation a little less burdensome. This practice has already been adopted in

(iv).

The relation) is used mainly in combination with the transitive or the tran-

sitive and reective closure, denoted)+, resp.)�.

De�nition 3.4 (subclasses of CFG)

We can de�ne several useful subclasses of CFG, the class of context-free languages.

Often used subclasses are acyclic CFG's and "-free CFG's. In part II we only use

one subclass: grammars in Chomsky Normal Form.

A context-free grammarG is in Chomsky Normal Form (CNF) if P contains

productions of the form A!BC and A!a only.

We write CNF for the class of grammars in Chomsky Normal Form. 2

46 3. Tree-based parsing schemata

De�nition 3.5 (trees)

Let U be the class of �nitely branching �nite trees in which children of a node

have a left-to-right ordering, and every node is labelled with a symbol from Sym .

For G = (N;�; P; S) 2 CFG, the set Trees(G) � U is the set of trees with labels

in N [� [f"g, in which every node u satis�es one of the following conditions:

� u is a leaf;

� u is labelled A, the children of u are labelled X1; : : : ; Xn and there is a

production A!X1 � � �Xn 2 P ;

� u is labelled A, u has one child labelled " and there is a production A!" 2 P .

We write �; �; : : : for tree variables. 2

De�nition 3.6 (root, yield)

For G 2 CFG and � 2 Trees(G) we de�ne

root(�) is the label of the root of � ;

yield(�) is the string that is obtained by concatenating the labels of all leaves

of � in left-to-right order. 2

The leaves of � are labelled with symbols from V [f"g. The yield is a string in

V �, as the empty string symbol " disappears in concatenation. Only if all leaves

are labelled " then yield(�) is the empty string.

De�nition 3.7 (parse tree)

A tree � 2 Trees(G) is called a parse tree or a parse for a string a1 : : :an if

root(�) = S and yield(�) = a1 : : :an.

A string in �� is called valid with respect to G if it has a parse tree. A valid string

is also called a sentence. 2

We introduce a convenient, linear notation for trees that will be used through-

out the remainder of this book.

De�nition 3.8 (linear tree notation)

An arbitrary tree with root A 2 N and yield � 2 V � is denoted hA;�i; see Fig-

ure 3.1(a). Note that, in general, there are many trees satisfying these conditions

(if we want to be more speci�c about the structure of the tree, we can use nested

expression as introduced below). As a special case, we write hA!�i for a tree

that has a root and a sequence of leaves, but no intermediate nodes. Thus a tree

hA!�i corresponds to a single production A!� 2 P , see Figure 3.1(b).

We also use nested expressions for trees. The expression

hA;� hB;�i i

3.1 Context-free grammars 47

J
J

J
JJ

�

A

(a) hA;�i

�
�
�
��

�
�
�
��

@
@

@
@@

: : :X1 X2 Xn

A

(b) hA!X1 � � �Xni

�
�
�
��

@
@

@
@@

�
�
�

A
A
A�

�

B

A

(c) hA;� hB;�i i

�
�
�
�
��

Z
Z

Z
Z

ZZ

�
�
�

C
C
C

�
�
�

C
C
C�

�1

: : :

�n

B1 Bn

A

(d) hA;� hB1 � � �Bn;�1 � � ��ni i

Figure 3.1: Some kinds of trees and their linear denotation

48 3. Tree-based parsing schemata

denotes a tree hA;��i that can be constructed by replacing the leaf B in a tree

hA;�B�i by a subtree hB;�i. See Figure 3.1(c). As a convenient shorthand,

a tree

hA;� hB1;�1i � � � hBn;�ni i;

as shown in Figure 3.1(d), will be denoted by

hA;�hB1 � � �Bn;�1 � � ��ni i:

We write hA;� h�; i �i if there is a series of n subtrees �1; : : : ; �n such that

� = root(�1) � � �root(�n) and = yield(�1) � � �yield(�n). Occasionally it will be

convenient to use this notation for n = 0. It evidently holds that hA; � h";

"i �i = hA;��i. 2

3.2 Some small extensions to context-free

grammars

We introduce a small nonstandard extension to context-free grammars. This is

needed for the formal de�nition of tree-based parsing schemata in 3.5 but hardly

relevant for the following chapters.

At the end of this section we have a closer look at the status of pre-terminals

in natural language parsing.

The work that has to be done in parsing a sentence is mainly, but not exclu-

sively, concerned with constructing (parts of) parse trees. We also have to verify

that the constructed (partial) trees do indeed derive (part of) the sentence we

want to have parsed.

Consider the following hypothetical example. We have a sentence abcde, and

the grammar contains a production A!abc. From reading the �rst a we may

conclude that the production A!abc could apply here, so we add hA!abci to the

set of partial trees that could contribute to the construction of a parse for abcde.

The next two steps then would be to verify that indeed b is the second and c

is the third word of the sentence. Only after having done so, we may conclude

that hA!abci is in fact a parse tree for the subsentence abc. If we parse another

sentence abd : : :, we will also conjecture that hA!abci is a partial parse, but this

time it will be disquali�ed when we read the third word of the sentence.

From this example it is clear that it makes sense to introduce some notation

indicating which leaves of a tree are truly part of the sentence and which leaves

are only conjectured and have to be veri�ed still. A standard solution is to make

a di�erence between expanded and unexpanded leaves of a tree. If we indicate

expansion of leaves by underlining, the fact that A!abc is a partial parse for the

�rst part of the sentence would be established by deriving a sequence of trees

hA!abci; hA!abci; hA!abci:

3.2 Some small extensions to context-free grammars 49

We will use a slightly more subtle scheme, however, in which nodes are not simply

expanded but expanded to a particular position in the sentence. This rules out any

ambiguity, for example when expanded leaves labelled with terminals are separated

by an unexpanded leaf labelled with a nonterminal. Furthermore, we can denote

the notion \a occurs at position j in the sentence" by a particular kind of tree

(it is this tree with which a terminal leaf is expanded). Hence the entire parsing

process can be described in terms of tree manipulation. This is precisely what we

have done informally in the Primordial Soup approach in Chapter 2.

At the same time we introduce a notational convention that is used by many

parsing algorithms: the end of the sentence can be indicated by an end-of-sentence

marker , usually denoted $, which is added to a string a1 : : : an as the (n + 1)-st

symbol. Similarly, we may sometimes use a beginning-of-sentence marker , denoted

#, with is added to a string as the 0th symbol. It is assumed that #; $ 62 V .

De�nition 3.9 (marked terminal)

For every G 2 CFG a marked terminal is a pair (a; j) 2 (� [f#; $g)� IN.

We usually write aj rather than (a; j). We also write � for (� [f#; $g)� IN. 2

The natural number j is used to indicate the position of a word. For each word

in the sentence aj we will create a special tree ha!aji. The sentence can now be

represented as a set of trees, rather than a string of symbols. The initial set of

trees for a1 : : :an thus is

fa!aj j a is the j-th word of the sentenceg

The beginning of the sentence in the above example is now parsed as follows.

From hA!abci and ha!a1i we obtain hA; a1bci. With hb!b2i this combines to

hA; a1b2ci, and so on. In this way we have replaced the concept of expanding a

terminal by combining trees.

If needed, the end-of-sentence symbol may be represented by a tree h$!$n+1i

and the beginning-of-sentence symbol by a tree h#!#
0
i. In Section 3.5 we will

argue that the end-of-sentence marker is a necessary extension, needed to infer

that there is no word beyond position n, while the beginning-of-sentence marker

is merely a notational convenience. The sentence, by de�nition, starts with word

number 1.

In order to get things formally right, we have to extend some de�nitions.

De�nition 3.10 (extension of De�nitions 3.2, 3.3, 3.5, and 3.7)

(i) A pseudo-production is a pair (a; (a; j)) with (a; j) a marked terminal. We

usually write a!aj rather than (a; (a; j)). We write P for the set of pseudo-

productions for a particular grammar.

(ii) The variables �; �; ; �; : : : may range over N [� [�.

50 3. Tree-based parsing schemata

(iii) The class of trees Trees(G) is extended to cover pseudo-productions as well.

That is,

� nodes carry labels from N [� [� [f"g,

� in addition to the three alternatives in De�nition 3.5, a node u may be

labelled with a terminal a and have a single child labelled aj for some

j.

(iv) A tree � 2 Trees(G) is called a marked parse tree or marked parse for a

sentence a1 : : :an if root(�) = S and yield(�) = a1 : : : an. 2

De�nition 3.11 (set of marked parse trees)

The set of marked parse trees P
(n)
G for a given context-free grammar G and all

strings of length n is de�ned by

P
(n)
G = f� 2 Trees(G) j 9a1 : : : an 2 �� : root(�) = S^yield(�) = a1 : : :ang:

The set of marked parse trees PG(a1 : : : an) for a given context-free grammar G

and a particular string a1 : : :an is de�ned by

PG(a1 : : : an) = f� 2 Trees(G) j root(�) = S ^ yield(�) = a1 : : :ang: 2

A variety of parallel parsing algorithms can be formally expressed in terms

of trees and operations on trees only. In order to cover the familiar sequential

algorithms as well, we have to make another slight extension. One needs to express

the fact that a tree with no marked terminals should expand downwards only to

a particular position in the sentence.

De�nition 3.12 (left- and right-marked trees)

A left-marked tree is a pair (i; �) 2 IN � Trees(G). We usually write i : � rather

than (i; �)

A right-marked tree is a pair (�; i) 2 Trees(G)� IN. We usually write � : i rather

than (�; i) 2

Note that it is conceivable that trees could have a marking at some other position

in the yield, rather than leftmost or rightmost. We will not formally de�ne these;

they will not be used in this book.

In formal language theory we distinguish between two kinds of symbols: ter-

minals and nonterminals. In the analysis of natural language it is more convenient

to distinguish three kinds of symbols: nonterminal categories, lexical (also called

pre-terminal) categories, and words. From a formal point of view, it is clear that

the words are terminals and that the pre-terminals are a subset of the nonter-

minals. In parsing algorithms, however, it is much more convenient to consider

3.3 Deduction systems 51

the lexical categories as terminals, and simply forget about the words. This has

the advantage that the size of the grammar is reduced dramatically. A natural

language grammar typically has not more than a few dozen lexical categories,

while a dictionary may contain many thousands of words. A minor disadvantage

is that a word may fall into di�erent lexical categories, hence the (pre-)terminals

in the string to be parsed are not uniquely de�ned. But for our theory of parsing

schemata this is not a problem at all. The lexical categories of the words will be

represented as hypotheses, and there is no objection to having di�erent hypotheses

about a single word. Moreover, if we regard lexical categories as terminals, than a

marked terminal, as introduced above, can be seen as a lexical category annotated

with a word at some position in the sentence.

Lifting terminals from real words to lexical categories causes an anomaly for

grammars in Chomsky Normal Form. Consider again grammar G2:
2

S ! NP VP ;

S ! S PP ;

NP ! *det *n ;

NP ! NP PP ;

VP ! *v NP ;

PP ! *prep NP :

If we regard *n , *v , *det and *prep as pre-terminal nonterminals this grammar

is in CNF . If we regard the lexical categories as terminals, on the other hand,

the de�nition of Chomsky Normal Form must be adapted. In Chapter 2 we have

avoided the issue by calling such grammars binary branching. In Chapters 3{6,

where we develop a formal theory of parsing schemata, we will stick to the formal

de�nition of Chomsky Normal Form as presented in De�nition 3.4.

In sum, whether lexical categories are treated by a parser as terminals or as

preterminal nonterminals is not relevant for the theory of parsing schemata.

3.3 Deduction systems

The general concept of a deduction system, as we will present it here, conforms

to deduction systems as they are known in mathematical logic. The details of

our de�nition are somewhat idiosyncratic, however. Here we present deduction

systems in a way that facilitates easy de�nitions of derived concepts in subsequent

sections and chapters.

A deduction system contains an arbitrary set of objects, called entities. The

purpose of a deduction system, in a narrow sense, is that it allows to establish

2Following standard convention, we abreviate *noun and *verb to *n and *v . Sometimes,
when there are space restrictions (in many �gures) we also abbreviate *det and *prep to �d and

�p.

52 3. Tree-based parsing schemata

which entities are valid . From an initial set of hypotheses, by means of a set of

deduction steps, the validity of entities can be deduced.

The word \entity" is not supposed to mean anything, other than an identi�able

object. When we come to parsing systems and parsing schemata, these entities

will be trees (in this chapter) or items (in the next chapters) that are employed

by some chart parser. Note that the term \item" is, in general, equally void of

meaning. We will give it a precise meaning in the context of parsing schemata in

Sections 4.3 and 4.4.

The initially valid entities in a logical deduction system are usually called

axiomata. We use the word \hypothesis" on purpose, because it suggests truth

of a much more volatile nature than an axiom. In a deduction system that is (an

abstraction of) a parser for a particular grammar, the entities and deduction steps

are �xed; the hypotheses vary according to the string that is to be parsed.

Finally, where a deduction system conventionally has a set of inference rules,

each rule having its own arity, we lump these together into a single set of inferences,

called deduction steps.

De�nition 3.13 (deduction step, antecedent, consequent)

Let X be a set of entities, H a set of hypotheses. A deduction step is a pair (Y; x)

with Y � H [X a �nite set and x 2 X.

We write }(Z) for the power set (i.e. the set of subsets) of any Z. We write }�n(Z)

for the set of all �nite subsets of Z. Hence a deduction step (Y; x) is an element

of the set }�n(H [X) �X.

In a deduction step (fy1; : : : ; ykg; x), the entities y1; : : : ; yk are called the an-

tecedents and x is called the consequent of the deduction step. 2

De�nition 3.14 (deduction system)

A deduction system D is a triple hX;H;Di, with

X a set of entities, called the domain of D ;

H a set of hypotheses;

D � }�n(H [X) �X a set of deduction steps. 2

The astute reader will be astonished, perhaps, that H is not necessarily a subset

of X. It seems rather more natural to assume H � X, and D � }�n(X)�X. The

reason for this idiosyncratic de�nition is pragmatic. It does not do any harm to

the theory when some (or all) hypotheses are outside the domain of the deduction

system. A minor nuisance is that we have to write H [X rather than X. The

speci�cation of realistic parsing schemata is simpli�ed, in fact, by assuming the

hypotheses to be outside the domain. In the Examples 3.19 and 3.20 that will

follow shortly, hypotheses are contained in the domain as one would normally

assume.

3.3 Deduction systems 53

It should be noted that a deduction step may have zero antecedents. If (;; x) 2

D then x can always be deduced, regardless of the set of hypotheses.

If we know that x can be inferred from y1 and y2, using a deduction step

(fy1; y2g; x), then it should also be possible to infer x from a superset of the an-

tecedents, e.g., y1, y2, and y3. There is no guarantee, however, that if (fy1; y2g; x)

2 D then also (fy1; y2; y3g; x) 2 D. To this end we de�ne an inference relation `,

that is the closure of D under addition of antecedents to an inference.

De�nition 3.15 (inference relation `)

Let D = hX;H;Di, be a deduction system. The relation ` � }(H [X) � X is

de�ned by

Y ` x if (Y 0; x) 2 D for some Y 0 � Y . 2

It has some practical advantages to allow an in�nite set of antecedents of `. If,

for example, some x can be directly inferred from some hypotheses, we may write

H ` x, even though H can be an in�nite set.

When an entity can be deduced from a given set of entities by a series of

inferences, we will use the notation `� (to be introduced in De�nition 3.17). The

symbol ` is reserved for a single-step inference.

Each deduction step is a valid inference, by de�nition it holds that D � `. We

will use the inference symbol ` also to de�ne (sets of) deduction steps. When we

write Y ` x it is usually not relevant whether Y ` x is an element of D or Y ` x

is obtained from some (Y 0; x) 2 D with Y 0 � Y . The set D can be considered as

a de�ning subset of `. We make the di�erence between D and ` only because it

is much easier for the speci�cation of a deduction system to de�ne the \essential"

subset D rather than the full set of inferences `. In the rare cases where it is

essential for some argument that a deduction step is in D, and not any derived

inference, we will denote the deduction step by (Y; x) rather than the the informal

notation Y ` x.

As a second, informal simpli�cation of the notation, we write y1; : : : ; yk ` x,

rather than fy1; : : : ; ykg ` x to indicate that the consequent x can be deduced from

the antecedents y1; : : : ; yk. In most deduction systems there is a clear distinction

between entities and sets of entities and no confusion can arise when the curly

brackets are deleted. Only if a set of entities can be an entity by itself, e.g.,

y = fy1; : : : ; ykg, the informal notation y ` x is ambiguous and cannot be used.

In any such case where confusion could arise, it will be stated explicitly that we

switch to the formal notation where set brackets cannot be deleted.

De�nition 3.16 (deduction sequences)

We write X+ for the set of non-empty, �nite sequences x1; : : : ; xj, with j � 1 and

xi 2 X (1 � i � j). Let D = hX;H;Di, be a deduction system.

54 3. Tree-based parsing schemata

An inference sequence or a deduction sequence in D is a pair (Y ;x1; : : : ; xj) 2

(H [X) �X+ ; such that

Y [fx1; : : : ; xi�1g ` xi for 1 � i � j:

As a practical informal notation we write

Y ` x1 ` : : : ` xj

for a deduction sequence (Y ;x1; : : : ; xj).

The set of deduction sequences �(D) � }(H [X) �X+ for D is de�ned by

�(D) = f(Y ;x1; : : : ; xj) 2 }(H [X) �X+ j Y ` x1 ` : : : ` xjg:

When it is clear from the context which deduction system is meant, we write �

rather than �(D). 2

De�nition 3.17 (transitive and reexive inference relation `�)

Let D = hX;H;Di be a deduction system.

We de�ne the relations `0, `+ and `� on }(H [X) �X as follows.

Y `0 x if x 2 Y ,

Y `+ x if Y ` : : : ` x,

Y `� x if Y `0 x or Y `+ x. 2

We do not make a distinction between semantic validity (usually denoted j= x)

and syntactic provability (i.e. H `� x). We are only concerned with syntactic

structure here, the concept of semantic validity simply doesn't exist in this context.

A notion of correctness of a deduction system for a given speci�c purpose will be

introduced in Section 3.4.

De�nition 3.18 (validity)

Let D = hX;H;Di, be a deduction system.

The set of valid entities, denoted V(D), is de�ned by

V(D) = fx 2 X j H `� xg:

We usually write V , rather than V(D), if it is clear from the context which deduc-

tion system is meant. 2

Example 3.19 (propositional logic)

A logical deduction system is a deduction system hW�; Ax;Di in which W� is

a set of well-formed formulae, Ax � W� is a set of axioms, and D a set that

contains all instantiations of all proof rules. Standard propositional logic (see,

e.g., Mendelsohn [1964]) is cast into a deduction system as follows.

W� is the smallest set satisfying

3.3 Deduction systems 55

� some given set of proposition symbols is a subset of W� ;

� if � 2W� then also :� 2W� ;

� if �; 2W� then also (�!) 2W� .

A set of axioms for propositional logic is:

Ax1 = f�!(!�) j �; 2W� g;

Ax2 = f(�!(!�))!((�!)!(�!�)) j �; ; � 2W� g;

Ax3 = f(: !:�)!((:�!)!�) j �; 2W� g;

Ax = Ax1 [Ax2 [Ax3:

The set of deduction steps, �nally, is given by

D = f�; (�!) ` j �; 2W� g:

The set of deduction steps D is a relation over W� 2 �W�, and is known as the

inference rule modus ponens. 2

Example 3.20 (CYK)

The CYK algorithm, named after Cocke, Younger and Kasami [Younger, 1967],

[Kasami, 1965], is de�ned for grammars in Chomsky Normal Form(cf. De�ni-

tion 3.4). For a given grammar (N;�; P; S) in CNF and string a1 : : :an a deduction

system hI;H;Di for the CYK algorithm is given by

I = f[A; i; j] j 0 � i < j ^ A 2 Ng;

H = f[A; j � 1; j] j A!aj 2 P ^ 1 � j � ng;

D = f[B; i; j]; [C; j; k] ` [A; i; k] j A!BC 2 P ^ 0 � i < k < jg:

Note that the set of CYK items and the set of deduction steps are in�nite, as

they are not bounded by the length of the string. This has been done on purpose,

in the sequel we will take care to de�ne deduction systems in such a way that

only the hypotheses depend on the particular string, while the sets of entities and

deduction steps are �xed for a given grammar, hence I and D have to be able to

cope with strings of arbitrary length. The fact that there is an in�nite number

of entities and deduction steps does not cause any practical problems; for parsing

any given string, only a �nite subset needs to be used.

The set of derivable CYK-items is characterized by

V(D) = f[A; i; j] j A)�ai+1 : : :ajg;

this is easily veri�ed by induction on the length of a derivation sequence)�. 2

56 3. Tree-based parsing schemata

3.4 Enhanced deduction systems

In Section 3.5 and Chapter 4 we will describe (abstractions of) parsing and recog-

nition algorithms by means of deduction systems. An important property of al-

gorithms is correctness. For a deduction system, similarly, we need to be able to

state that it is correct for a speci�c given purpose. In order to formally capture

this property we introduce enhanced deduction systems.

We have no semantic interpretation of deduction systems, hence we must es-

tablish a purely syntactic criterion for correctness. To this end we postulate the

existence of a set of �nal entities, which is a subset of I. These �nal entities are

divided into correct and incorrect �nal entities. Which ones are correct is known

by de�nition. (When a deduction system is used for some particular purpose, there

will be some motivation behind the de�nition of correct �nal items, but from a

formal point of view the de�nition is arbitrary.) A deduction system is correct if

it all correct �nal items are valid and all incorrect �nal items are invalid.

When entities are trees, for example, we can take as �nal entities those trees

that constitute a parse for some sentence. The correct �nal items, then, should

be all the parse trees for a given particular sentence. Incorrect �nal items are all

those trees that are valid parse trees, but for other sentences than the one that is

to be parsed.

This is formalized as follows.

De�nition 3.21 (enhanced deduction systems)

A enhanced deduction system E is a quintuple hX;H;F;C;Di, with

X a set of entities,

H a �nite set of hypotheses,

F � X a set of �nal entities,

C � F a set of correct �nal entities,

D � }�n(H [X) �X a set of derivation steps. 2

The set F represents the entities that we are really interested in; the other entities

in Xn(H [F) are \intermediate" entities that may help to derive the validity of

the correct �nal entities. It is not demanded that F , or even C be �nite. (In

a cyclic grammar, for example, most sentences have an in�nite number of parse

trees. An algorithm that enumerates all parses is correct, in a sense, even though

it doesn't �nish.)

The relations ` and `� are as in De�nition 3.15, the sets of valid entities V(E)

as in De�nition 3.18.

De�nition 3.22 (correctness)

Let E = hX;H;F;C;Di be an enhanced deduction system.

3.4 Enhanced deduction systems 57

E is sound if all valid �nal entities are correct, i.e., F \ V(E) � C,

E is complete if all correct �nal entities are valid, i.e., C � F \ V(E),

E is correct if E is sound and complete, i.e., C = F \ V(E). 2

Example 3.23 (yes/no system)

A yes/no system focuses on the question whether a particular single entity is

correct or not. A yes/no system is an enhanced derivation system of the form

hX;H; fyg; C;Di

where y 2 X is the entity of which the validity is to be decided upon. 2

Example 3.24

Any deduction system D = hX;H;Di can be extended to a correct enhanced

deduction system

hX;H;X;V(D); Di: 2

Example 3.25 (CYK, continued)

Consider, again, the CYK deduction system hI;H;Di as in Example 3.20. How

should we de�ne the enhanced system? That depends on what we see as the result

that should be computed by the CYK algorithm. If we see CYK as a recognizer

sec, then we only want a yes/no answer to be delivered. Hence we can de�ne

F = f[S; 0; n]g;

and in order to prove the correctness of the system we have to show that C = F

if a1 : : :an is a valid sentence and C = ; otherwise.

On the other hand, if we see the CYK algorithm as a parsing algorithm (of the

kind that does not deliver parse trees but a useful set of partial results), we are

interested in the entire set of valid items. From this point of view the proper way

to enhance the deduction system of Example 3.20 is to de�ne

F = I;

C = f[A; i; j] j A)�ai+1 : : :ajg:

In order to prove the correctness of CYK, according to this de�nition, we have to

establish that V = C. 2

The main point in de�ning enhanced deduction systems is that we need a

formal notion of correctness, that allows us to formally de�ne what constitutes a

correct parsing schema. From Example 3.25 it is clear that this can be done in

di�erent ways. From a formal point of view, the �rst approach is the right one.

CYK is, strictly speaking, a recognition algorithm. Such an algorithm is correct,

58 3. Tree-based parsing schemata

by de�nition, if it yields a single yes/no answer indicating whether the string is

correct or not. From a more practical perspective, however, we see CYK as a

parser and adopt the second point of view. On top of a yes/no answer whether a

string is a sentence, a set of valid items is recognized from which the parse trees

can be constructed. It is this set V we are interested in, as the \output" of CYK,

hence the second enhancement is the appropriate one.

The same considerations apply to any chart parsing algorithm. It is the �nal

chart, the set V in our terminology, that we are interested in. The problem is that

one cannot give a general de�nition of V . Which items are on the �nal chart of

a parser depends, of course, on the way in which the parser tries to construct a

parse tree.

Hence we cannot formalize the second notion of correctness. As we are con-

structing a formal theory here, we will adopt the �rst notion and regard a chart

parser as a recognition algorithm. When we come to describe parsing system re-

ecting real algorithms (that is, algorithms described in the literature as parsers,

not as simple examples), however, we won't even de�ne the enhanced system but

concentrate on the properties of the set V(D) instead.

3.5 Tree-based parsing schemata

A parsing system is a deduction system for a given grammar and string. A pars-

ing schema is a more abstract object that de�nes a parsing system for arbitrary

grammars and strings.

First, we will consider a deduction system for a given grammarG = (N;�; P; S)

and a given string a1 : : :an. The domain of such a deduction system is a sub-

set of Trees(G) (including the extensions with pseudo-productions, cf. De�ni-

tion 3.10.(iii)). The set of deduction steps D encodes how new trees can be

obtained from trees that have been derived already. The initial set of trees is

given by the set of hypotheses H.

A system is complete if all marked parse trees for the string are deduced. A

system is sound if no marked parse tree for a di�erent string of the same length

can be deduced. It is conceivable, however, that a marked parse tree for a string

of shorter length is deduced by a sound tree-based parsing system. Consider, for

example, the case that S)�a1 : : :ak and S)�Sak+1 : : : an. Then a marked parse

tree hS ; a1 : : :aki could be found while parsing a1 : : :an.

De�nition 3.26 ((instantiated) tree-based parsing system)

Let G be a context-free grammar and a1 : : :an 2 �� and arbitrary string. A

deduction system hT ;H;Di is called an instantiated tree-based parsing system for

G and a1 : : : an when the following conditions are satis�ed:3

3 (Cf. De�nition 3.11 for P
(n)

G
).

3.5 Tree-based parsing schemata 59

(i) T � Trees(G),

(ii) P
(n)

G � T ,

(iii) ha!aii 2 H for each a1, 1 � i � n 2

Usually we will drop the adjective \instantiated" and talk about a tree-based pars-

ing system for G and a1 : : : an.

De�nition 3.27 (correct tree-based parsing system)

An instantiated tree-based parsing system hT ;H;Di for a grammarG and a string

a1 : : :an is correct if the enhanced deduction system

hT ;H;P
(n)

G ;PG(a1 : : :an); Di

is correct. 2

The set of hypotheses H will be di�erent for di�erent input strings, obviously.

It provides the initial trees from which everything else is derived. It would make

sense (but it is not implied by the above de�nition) that the set of deduction steps

D is not dependent on a particular input string. This will be a consequence of the

next de�nition, in which we consider parsing systems for arbitrary strings. The

fact that the domain of a parsing system should be independent of the string that

is to be parsed has been anticipated in De�nitions 3.26 and 3.27. It would su�ce

to demand that PG(a1 : : :an) � T , rather than P
(n)
G � T , so as to make sure that

hT ;H;Di is a valid parsing system for a1 : : :an. (The set of �nal entities would

then be P
(n)

G \ T , which does not necessarily equal P
(n)

G). Marked parse trees of

strings that are not to be parsed need not necessarily be contained in the domain

of the system. But, obviously, all marked parses of any string must be in T if it is

to serve as a domain of a parsing system for arbitrary strings.

De�nition 3.28 (uninstantiated tree-based parsing system)

Let G be a context-free grammar. An uninstantiated tree-based parsing system

for G is a triple hT ;K; Di with with K : ��!}(Trees(G)) a function such that

hT ;K(a1 : : :an); Di is a tree-based parsing system for each a1 : : :an 2 ��. An

uninstantiated tree-based parsing system hT ;K; Di is correct if hT ;K(a1 : : :an);

Di is correct for each a1 : : : an 2 ��. 2

Wewill blur the distinction between instantiated and uninstantiated systems some-

what; as a practical notation we write T(a1 : : : an) or simplyTto denote both. In

an instantiated system, a1 : : :an denotes a particular string and in an uninstanti-

ated system a1 : : : an denotes a formal parameter for a string. This won't cause

any confusion.

60 3. Tree-based parsing schemata

De�nition 3.29 (tree-based parsing schema)

A a tree-based parsing schema T for a class of grammars CG is a function that

assigns an uninstantiated tree-based parsing system to every grammar G 2 CG.

T is correct if, for each G 2 CG, the uninstantiated tree-based parsing system

T(G) is correct. 2

De�nition 3.30 (the function K)

In all examples of tree-based parsing systems and schemata we will use the the

same function K, de�ned by

K(a1 : : : an) = fha!aii j a = aig [fh#!#
0
i; h$!$

n+1ig: 2

The end-of-sentence marker $ and beginning-of-sentence marker # are added for

convenience. In some parsing schemata it is rather more easy to de�ne D(G) when

every word in the sentence has a left and right neighbour, also the �rst and the

last word. We will not use these sentence markers until Chapter 6, however. Only

when we discuss �ltering we will see practical examples of their use.

It is always possible to convert a parsing system using the beginning-of-sentence

marker into a system without it. One simply has to adapt the deduction steps

for the special case that one of its arguments would extend to the left of position

0. The situation at the end of the sentence is di�erent, however. It might be

essential to know that a tree of a certain kind (c.q. the next word of the string)

does not exist. As negative information can't be handled in our formalism, the

nonexistence of a (n+1)-st word is stated in a positive way by the end-of-sentence

marker.

As we always use the same function K, a parsing schema T is fully speci�ed

by a de�ning a pair hT (G); D(G)i for an arbitrary grammar G 2 CG. For each

grammar G 2 CG and string a1 : : :an 2 �� the schema materializes to a deduction

system

T(G)(a1 : : : an) = hT (G);K(a1 : : :an); D(G)i:

It is possible, although somewhat cumbersome, to give a characterization of

a universal class of parsing schemata. Let (X!Y) denote the class of functions

from X to Y . Let CG be a class of context-free grammars, Sym be a universal

set of symbols from which N , �, and � are drawn, U the universal set of labelled

trees. Then T � U , or T 2 }(U). Furthermore, K 2 (Sym�!}(U)) and D 2

}(}�n(U)� U). Hence the universal class of parse schemata is a subclass of

(CG ! (}(U)� (Sym�!}(U))� }(}�n(U) � U)))

One could add constraints to this huge class of objects such that that only \mean-

ingful" elements remain, but that is not very interesting. The more important fact

is that we have a formally de�ned a \universe of parsing schemata", in which we

can reason about schemata, de�ne relations between them and invent substitutions

that transform a parsing schema into a di�erent parsing schema.

3.5 Tree-based parsing schemata 61

Example 3.31 (PS, a schema for the Primordial Soup algorithm)

A Primordial Soup parsing schema PS is de�ned as follows. For an arbitrary

G 2 CFG and a1 : : :an 2 �� we de�ne a tree-based parsing system TPS =

hT ;K(a1 : : :an); Di with K(a1 : : :an) as in De�nition 3.30. We make use of a

predicate allowed that is true for a tree if both the word order constraint and the

width constraint are obeyed. Di�erent de�nitions for these constraints are pos-

sible; which one is chosen doesn't matter for the general idea of the Primordial

Soup schema (cf. De�nition 2.1):

T = f� 2 Trees(G) j allowed(�)g;

D(1) = f ` hA!�i j A!� 2 Pg;

D(2) = f�; � ` � � � j � � � 2 T g;

D = D(1) [D(2):

Unlike the intuitive version of the Primordial Soup algorithm in Chapter 2, we

make a distinction here between elementary trees that constitute marked termi-

nals (the hypotheses) and elementary trees that represent the productions of the

grammar. These last ones are included in the deduction steps, but do not need an

antecedent. Productions are always valid, irrespective of the sentence. The second

set of deduction steps denotes all possible instances of valid composition.

The description of production trees as (antecedentless) derivation steps, rather

than hypotheses, is a consequence of the general principle that the sentence is

coded by K, while the grammar is covered by D. 2

Example 3.32 (TCYK, a tree-based parsing schema for CYK)

A tree-based parsing schema TCYK can be given for CNF , the class of grammars

in Chomsky Normal Form. For an arbitrary grammarG 2 CNF we de�neTCYK =

hT ;K(a1 : : :an); Di by

T = f� 2 Trees(G) j yield(�) 2 ��g;

D(1) = fha!aii ` hA!ha!aiii j A!a 2 Pg

D(2) = fhB ; ai+1 : : :aji; hC ; aj+1 : : :aki

` hA; ai+1 : : :aki j A!BC 2 Pg:

D = D(1) [D(2)

The �rst set of deduction steps is to derive the nonterminals we usually start with,

because for the sake of standardization the hypotheses cover the terminals in the

sentence. 2

62 3. Tree-based parsing schemata

3.6 Conclusion

We have given a formal de�nition of tree-based parsing schemata. A deduction

system is de�ned for a particular grammar and string. The hypotheses, i.e., the

initial set of valid objects, are determined by the string. The grammar is encoded

in the deduction steps of the system. Hence an uninstantiated parsing system

for some grammar can be instantiated to a deduction system by providing the

hypotheses for that string. A parsing schema speci�es an uninstantiated parsing

system for some class of grammars.

Parsing schemata are concise, because many practical details are abstracted

from. Moreover, the description is static. We have objects and rules, but no

behaviour of any kind. This will prove to be an asset in reasoning about systems

in the next chapters. Static objects are much easier to capture formally than

dynamic behaviour.

Practical parsers compute items, rather then trees, as partial results. In the

next chapter we will generalize the notion of tree-based parsing schemata to item-

based schemata. One could interpret tree-based schemata as a special kind of

item-based schemata, where every item comprises a single tree.

Chapter 4

Item-based parsing schemata

Many parsing algorithms, like CYK and Earley, are in fact recognition algorithms.

Such an algorithm does not construct parse trees by glueing together partial parse

trees as in a tree-based parsing system. Only the existence of a parse tree is

derived, based on items that denote the existence of partial parse trees. In the CYK

algorithm, as described in Example 3.20, an item [A; i; j] is valid i� A)�ai+1 : : :aj .

That is, in the notation of Section 3.1, some tree hA; ai+1 : : :aji exists, but we

don't care about the structure of the particular tree. It might be the case that

several di�erent trees exist with root A and yield ai+1 : : : aj.

Taking a more abstract view, we can see an item [A; i; j] as the equivalence class

of all trees with root A and yield ai+1 : : :aj . In a more general, formal approach

we will de�ne items as equivalence classes of trees.

From a set of recognized items a parse can be constructed in several ways. In

the CYK case, for example, once the item [S; 0; n] has been recognized one could

start to build a parse tree in \top-down" fashion, retracing the recognition steps in

reverse order. For each computed [A; i; k] with k�i > 1 it is guaranteed that some

production A!BC and position j can be found such that [B; i; j] and [C; j; k] have

been computed also.

Alternatively, one could annotate the items computed by the recognition algo-

rithm with information how they were obtained. That is, when a derivation step

[B; i; j]; [C; j; k] ` [A; i; k] is successfully applied, we add to the item [A; i; k] the

information that it is obtained from symbols B;C and position j. Thus all infor-

mation that is needed to construct all parses is captured in the set of computed

items in a distributed way.

Finally, if we do not limit parsing to a context-free backbone but add semantic

expressions to constituents, we might not need a parse tree anyway. The desired

63

64 4. Item-based parsing schemata

result in such a grammar is the semantic expression (or the set of di�erent semantic

expressions) that is added to the item [S; 0; n]. In such an approach, the structure

of the parse tree(s) is irrelevant.

From now on we will focus on parsing algorithms that do not really construct

parse trees. It su�ces that a parser produces a set of valid items.

We have argued that an item can be seen as an equivalence class of trees.

But trees are grouped together into an item not just randomly, but because they

share some relevant properties. Sets of items are congruence classes rather than

equivalence classes. An item-based parsing schema can be seen as a quotient system

of a tree-based parsing schema and a congruence relation.

The notions quotient and congruence are introduced for arbitrary deduction

systems in 4.1. In 4.2 we apply this to enhanced deduction systems, incorporating

a notion of validity. Quotient-based parsing schemata are de�ned in Section 4.3.

This rather algebraic approach will provide us with an understanding of what

an item is. Such a fundamental understanding is necessary, because many di�erent

algorithms employ many di�erent kinds of items. In this theoretical setting we

can see these many di�erent kinds of items as convenient notations for particular

subtypes of items from a more universal type.

Having dealt with the underlying algebra, we will simplify matters a lot. In

4.4 we de�ne parsing schemata based on items in much the same way as tree-

based parsing schemata were introduced in Section 3.5. Items can be interpreted

as partial speci�cations of trees, rather than congruence classes of trees. This

more liberal view makes it possible to include inconsistent items, i.e., partial

speci�cations that are not matched by any well-formed tree. In Section 4.5 we

will clarify the relation between the two de�nitions of parsing schemata and argue

that inconsistent items, although incompatible with the theory, do not do any

harm in practice.

In 4.6, �nally, we will give some nontrivial examples of parsing schemata for

well-known parsing algorithms, i.c. the Earley algorithm (with and without top-

down prediction) and the Left-Corner algorithm.

A remark on notation: in this chapter equivalence classes are sometimes re-

garded as sets and other times regarded as entities. In order to avoid any possible

confusion, we will use the informal notation y1; : : : ; yk ` x only in cases where it

is abundantly clear that y1; : : : ; yk are entities rather than sets of entities, viz., in

examples of parsing schemata for well-known algorithms. When we discuss parsing

systems on a more abstract level, we only use the formally unambiguous notation

fy1; : : : ; ykg ` x or Y ` x.

4.1 Quotient deduction systems 65

4.1 Quotient deduction systems

In this section we are concerned with equivalence relations on an arbitrary deduc-

tion system D . We will start to establish some desirable properties of equivalence

relations. Next, we introduce the notion of a congruence relation (denoted ')

and show that congruence relations satisfy these properties. In Section 4.2, sub-

sequently, we will investigate properties of congruence relations on an enhanced

deduction system E .

An equivalence relation is transitive, reexive and antisymmetric. Further-

more, an equivalence relation partitions a set into equivalence classes. We assume

that the reader is familiar with these basic facts from algebra.

Let � be an equivalence relation on a set X. We write [x]� or simply [x] for the

equivalence class of x, i.e., the subset of X containing all x0 such that x0 � x. A

quotient deduction system is the result of contracting equivalence classes to single

entities.

De�nition 4.1 (quotient deduction system)

Let D = hX;H;Di be a deduction system, � an equivalence relation on X. Then

we de�ne the quotient system D =� = hX=�;H=�; D=�i by

X=� = f[x] j x 2 Xg; with [x] = fx0 2 X j x0 � xg for any x 2 X;

H=� = f[h] j h 2 Hg; with [h] = fhg for h 2 HnX;

D=� = f(f[y1]; : : : ; [yk]g; [x]) j (fy1; : : : ; ykg; x) 2 Dg:

It is left to the reader to verify that D =� is indeed a deduction system. We also

call � an equivalence relation on D , rather than an equivalence relation on X. 2

An inference relation `� on a quotient system is de�ned as the closure of the set

of deduction steps D=� under addition of antecedents (cf. De�nition 3.15). The

transitive quotient inference relation `�� is derived from `� by De�nition 3.17.

On the other hand, we have a transitive inference relation `� in the deduction

system D , and when D is contracted to D = �, we obtain a quotient transitive

inference relation `��, de�ned by

f[y1]; : : : ; [yk]g `
�� [x] if fy1; : : : ; ykg `

� xg:

What, then, is the relation between the quotient transitive inference relation `��

and the transitive quotient inference relation `�� on }(H [X)= � �X= �? It

trivially holds that

`
��

� `
��; (4.1)

but the reverse is not necessarily true.

66 4. Item-based parsing schemata

In similar fashion we can compare the equivalence classes of valid entities with

the valid equivalence classes in the quotient system. It trivially holds that

V(D)=� � V(D =�): (4.2)

For deduction sequences, similarly, we �nd

�(D)=� � �(D =�): (4.3)

In Theorem 4.6 we will establish su�cient conditions that guarantee equality,

rather than set inclusion, in (4.1){(4.3). But in order to discuss these matters, we

will �rst introduce some terminology.

De�nition 4.2 (conservation properties)

An equivalence relation � on a deduction system D is called validity conserving if

V(D)=� = V(D =�):

An equivalence relation � on a deduction system D is called inference conserving

if

`�� = `�� :

An equivalence relation � on a deduction system D is called deduction sequence

conserving if

�(D)=� = �(D =�): 2

Corollary 4.3

Let � be an equivalence relation on some deduction system.

If � is inference conserving then � is validity conserving.

If � is deduction sequence conserving, then � is inference conserving. 2

Why are we interested in all these properties? The main issue, of course, is validity

conservation. When we discuss quotients of enhanced deduction systems in Sec-

tion 4.2, we will establish conditions on equivalence relations that guarantee that

a quotient system of a correct system is correct. The stronger notion of deduction

sequence conservation is needed for a technical result in Chapter 5.1 The inter-

mediate property of inference conservation is merely useful to simplify notation.

When it is known that `�� = `�� we can write ` rather than `� and `� rather

than `�� for inferences in the quotient system.

1It is essential that the de�nitions of item contraction and item re�nement are based on
deduction sequence conservation, rather than validity conservation, in order to guarantee that

re�nement, as de�ned in Section 5.2, is a transitive relation. In Section 5.1 we will see that
quotients over congruence relations are item contractions. We can make this follow as a corollary

if we establish here that congruence relations are deduction sequence conserving.

4.1 Quotient deduction systems 67

Example 4.4

The hierarchy of equivalence relations that is implied by Corollary 4.3 is strict.

We will give examples of deduction systems that satisfy one property but do not

satisfy the next stronger property.

� Let D = hX;H;Di be a deduction system with X = fa1; a2; bg; H = fhg;

and

D = ffhg ` a1; fa2g ` bg:

Moreover, let � be the equivalence relation on D de�ned by a1 � a2 and

x � x for any x 2 X. Then it holds that b 2 V(D =�), but also b 62 V(D)=�.

Hence � is an equivalence relation that is not validity conserving.

� Let D = hX;H;Di be a deduction system withX = fa; b1; b2; cg; H = fhg;

and

D = ffhg ` a; fag ` b1; fhg ` b2; fb2g ` cg:

Moreover, let � be an equivalence relation on D de�ned by b1 � b2 and x � x

for any x 2 X. Then, clearly, V(D =�) = V(D)=�. But for the inference

[a] `�� [c]

in D = � there is no corresponding inference in D . Hence � is a validity

conserving equivalence relation that is not inference conserving.

� Let D = hX;H;Di be a deduction system withX = fa1; a2; b; cg; H = fhg;

and

D = f fhg ` a1; fhg ` b; fa2g ` c; fbg ` cg:

Moreover, let � be an equivalence relation on D de�ned by a1 � a2 and

x � x for any x 2 X. Then it is easily veri�ed that `�� = `��. But for the

deduction sequence

f[h]g `� [ai] `
� [c]

in D = � there is no corresponding deduction sequence in D . Hence � is

an inference conserving equivalence relation that is not deduction sequence

conserving. 2

68 4. Item-based parsing schemata

Next, we turn to the notion of congruence. Congruence is de�ned with respect

to functions over a domain. An equivalence relation ' is a congruence relation

with respect to a function f : Xk!X if for arbitrary x1 ' x01; : : : ; xk ' x0k it

holds that f(x1; : : : ; xk) ' f(x01; : : : ; x
0

k). Standard handbooks on algebra (as,

e.g., [Gr�atzer, 1979]), do not extend congruence to relations over a domain. So we

will do that �rst.

Let us, for the sake of simplicity, look at a binary relation R. We call '

a congruence relation with respect to a relation R if the following condition is

satis�ed:

if x0 ' x and xRy then there is some y0 ' y such that x0Ry0. (4.4)

If we apply this to a function, which is a particular kind of relation, then (4.4)

reads

if x0 ' x and y = f(x) then there is some y0 ' y such that y0 = f(x0)

which corresponds to the standard notion of congruence. We can see R as a

nondeterministic function. The same idea can be applied to set of deduction

steps, where ` can be seen as a nondeterministic function with a variable number

of arguments. (we will swap x and y, however, as we have mostly used y to denote

arguments and x to denote consequents in deduction steps). If we see ` as an

action, then the notion of congruence on deduction systems corresponds to the

notion of simulation in process algebra.

De�nition 4.5 (congruence relation on a deduction system)

Let D = hX;H;Di be a deduction system. An equivalence relation ' is called a

congruence relation on D if, for any y1; : : : ; yk; y
0

1; : : : ; y
0

k 2 }�n(H[X) and x 2 X

the following condition holds:

if fy1; : : : ; ykg ` x and y1 ' y0i; : : : ; yk ' y0k
then there is some x0 2 X such that x0 ' x and fy01; : : : ; y

0

kg ` x0. 2

Theorem 4.6 (congruence relations are deduction sequence conserving)

Let ' be a congruence relation on a deduction system D then

�(D)=' = �(D ='):

Proof. We only have to prove �(D =') � �(D)='.

Without loss of generality, we only consider deductions with a �nite set of an-

tecedents. Hence it su�ces to prove the following claim.

Claim: Let

f[y1]; : : : ; [yk]g `
' [x1] `

' : : : `' [xj] (4.5)

for some y1; : : : ; yk 2 H [X and x1; : : : ; xj 2 X.

Then there are y01 2 [y1], : : : ; y
0

k 2 [yk], x
0

1 2 [x1], : : : ; x
0

j 2 [xj] such that

fy01; : : : ; y
0

kg ` x
0

1 ` : : : ` x0j: (4.6)

4.2 Quotients of enhanced deduction systems 69

We prove this claim with induction on j.

The basic step j = 1 follows straight from the de�nition of `'.

Next, assume that the claim holds for for 1; : : : ; j � 1, and assume (4.5) for some

y1; : : : ; yk, x1; : : : ; xj. From (4.5) it follows that

f[y1]; : : : ; [yk]; [x1]; : : : ; [xj�1]g `
' [xj];

hence, by the de�nition of `', there are y001 2 [y1], : : : ; y
00

k 2 [yk], x
00

1 2 [x1], : : : ;

x00j 2 [xj] such that

fy001 ; : : : ; y
00

k ; x
00

1; : : : ; x
00

j�1g ` x
00

j : (4.7)

Furthermore, according the induction hypothesis, there are y01 2 [y1], : : : ; y
0

k 2 [yk],

x01 2 [x1], : : : ; x
0

j�1 2 [xj�1] such that

fy01; : : : ; y
0

kg ` x01 ` : : : ` x0j�1: (4.8)

From (4.6) and y01 ' y001 ; : : : ; y
0

k ' y00k , x
0

1 ' x001 ; : : : ; x
0

j�1 ' x00j�1, the congruence

property yields x0j 2 [xj] such that

fy01; : : : ; y
0

k; x
0

1; : : : ; x
0

j�1g ` x
0

j ; (4.9)

and (4.6) is obtained as a combination of (4.8) and (4.9). 2

4.2 Quotients of enhanced deduction systems

In Section 4.2 we have de�ned enhanced deduction systems so as to introduce a

notion of syntactic correctness. Assume that an enhanced deduction system E is

correct, and ' is a congruence relation on E . Does this imply that E=' is also

correct? We will show that this is not generally the case and establish a su�cient

condition.

First, we extend De�nition 4.1 to enhanced deduction systems in the obvious

way.

De�nition 4.7 (enhanced quotient deduction system)

Let E = hX;H;F;C;Di be an enhanced deduction system, � an equivalence rela-

tion on X. Then we de�ne the quotient system E=� = hX=�;H=�; F=�; C=�

; D=�i by X=�, H=�, D=� as in De�nition 4.1 and

F=� = f[x] j x 2 Fg;

C=� = f[x] j x 2 Cg;

It is left to the reader to verify that E=� is indeed an enhanced deduction system.

2

70 4. Item-based parsing schemata

De�nition 4.8 (correctness preservation of equivalence relations)

Let E = hX;H;F;C;Di be an enhanced deduction system and � an equivalence

relation on E .

� is called soundness preserving if

for each [x] 2 V(E=�)\F=� there is some x0 2 [x]\F such that x0 2 V(E).

� is called completeness preserving if

for each x 2 V(E) \ F it holds that [x] 2 V(E=�).

� is called correctness preserving if it is both soundness and completeness pre-

serving. 2

Note that every equivalence relation is completeness preserving by de�nition.

Corollary 4.9

If E is a correct enhanced deduction system, and � is a soundness preserving

equivalence relation on E , then E=� is also a correct enhanced deduction system.

Example 4.10 (congruence does not preserve soundness)

We de�ne an enhanced deduction system E by

X = fa1; a2; b1; b2; cg;

H = fhg;

F = fb2; cg;

C = fcg;

D = ffhg ` a1; fa1g ` b1; fa1g ` c; fa2g ` b2; fa2g ` c; g:

Note that E is correct, because c 2 V(E) and b2 62 V(E). Furthermore we de�ne a

relation ' on E by a1 ' a2, b1 ' b2 and x ' x for any x 2 X. It is easy to verify

that ' is a congruence relation.

Now we �nd [b2] 2 F=' and [b2] 62 C=', but nevertheless [b2] 2 V(E='). Hence

E=' is not sound. 2

In enhanced deduction systems we make a distinction between �nal entities

in F and \intermediate" entities in XnF . The anomaly in the above example is

caused by the fact that the congruence class [bi] contains entities of both types.

If congruence classes are subclasses either of XnF or of F , the problem cannot

occur.

De�nition 4.11 (regular equivalence relation)

Let E = hX;H;F;C;Di be an enhanced deduction system. An equivalence relation

� on E is called regular if, for all x 2 F and x � x0 it holds that x0 2 F . 2

4.3 Quotient parsing schemata 71

We will in fact only be concerned with regular congruence relations, rather than

arbitrary regular equivalence relations. We write �=, rather than ', as a standard

notation for regular congruence relations.

Theorem 4.12

A regular congruence relation on an enhanced deduction system is correctness

preserving.

Proof.

Let E = hX;H;F;C;Di be an enhanced deduction system and �= a regular con-

gruence relation. Assume that �= does not preserve soundness. Then there is

some [x] 2 V(E=�=) \ F=�= such that all x0 2 [x] [F are not valid in E . Then

either [x] contains some valid x0 outside F , in which case �= is not regular, or

[x] 2 V(E=�=)n(V(E)=�=), in which case �= is not a congruence relation. 2

4.3 Quotient parsing schemata

After all the algebraic preparation we can now apply the results to parsing systems

and parsing schemata.

De�nition 4.13 ((un)instantiated quotient parsing system)

An (un)instantiated quotient parsing system is a deduction system Q = T= �=
with Tan (un)instantiated tree-based parsing system and �= a regular congruence

relation on T.

T is called the underlying tree-based parsing system of Q. 2

De�nition 4.14 (quotient parsing schema)

A a quotient parsing schema Q for a class of grammars CG is a function that

assigns an uninstantiated quotient parsing system to every grammar G 2 CG. 2

In De�nition 3.8 we have introduced a practical notation for trees. This can

be extended to a practical notation for congruence classes of trees, as follows.

When we referred to a tree hA ; �i, we meant some particular tree. Note,

however, that the tree is underspeci�ed. There could be many trees with root A

and yield �. Typically, a congruence class comprises all trees that suit this partial

speci�cation. In the sequel, we write [A ; �] for the congruence class [hA ; �i]

denoting all trees with root A and yield �. Or, more generally, for any tree

speci�cation according to De�nition 3.8, we denote the set of trees satisfying the

partial speci�cation, rather than some arbitrary tree within that set, by replacing

the outermost angle brackets by square brackets. Hence

[A;� hB;�i]

72 4. Item-based parsing schemata

denotes the set of all trees that conform to the picture in Figure 3.1(c), and

[A;� hB1 � � �Bn;�1 � � ��ni]

the set of all trees that conform to the picture in Figure 3.1(d) on page 47.

In Section 3.5 we have de�ned a function K that assigns hypotheses to any

input string (cf. De�nition 3.30). As hypotheses are not contracted in a quotient

system | or, to be very precise, each hypothesis is replaced by a singleton set |

we �nd that

K(a1 : : : an)=�= = f[a!ai] j a = aig [f[#!#
0
]; [$!$n+1]g (4.10)

for any regular congruence relation �=.

Hence a parsing schemaQ is fully speci�ed by a triple hT (G); D(G);�=Gi for an

arbitrary grammar G 2 CG. For each grammar G 2 CG and string a1 : : :an 2 ��

the schema materializes to a deduction system

Q(G)(a1 : : :an) = hT (G);K(a1 : : : an); D(G)i = �=G

The tree-based parsing system T speci�ed by T (G) and D(G) is called the under-

lying tree-based parsing schema of Q.

Corollary 4.15

A quotient parsing system Q is sound/complete/correct if and only if the under-

lying parsing system Tis sound/complete/correct.

A quotient parsing schema Q is sound/complete/correct if and only if the under-

lying parsing schema T is sound/complete/correct. 2

Example 4.16 (QCYK, a quotient parsing schema for CYK)

A quotient parsing schema QCYK can be given for CNF , the class of grammars

in Chomsky Normal Form.

For any grammar G 2 CNF we de�ne the relation �= on TCYK by

hA; ai+1 : : :aji
�= hB ; bk+1 : : : bli if A = B; i = k; and j = l:

The fact that �= is a congruence relation can be established straightforwardly (and

we will not take the trouble to write it out in a formal manner). Let � = hA ;

ai+1 : : : aji and �
�= � . If � is used in a deduction step, then the internal structure

of the tree is irrelevant. The tree � has the same root A and positions i and j can

be used in exactly the same manner to deduce large trees that are congruent to

trees deduced by � .

For an arbitrary grammar G 2 CNF we de�ne QCYK = hI;K(a1 : : :an); Di by

I = f[A; ai+1 : : : aj] j A 2 N ^ ai+1 : : : aj 2 ��
g;

D(1) = f[a!ai] ` [A!ha!aii] j A!a 2 Pg;

4.3 Quotient parsing schemata 73

D(2) = f[B ; ai+1 : : :aj]; [C ; aj+1 : : :ak]

` [A; ai+1 : : :ak] j A!BC 2 Pg;

D = D(1) [D(2);

and K(a1 : : :an) as in (4.10).

When we apply the usual denotation [A; i; j] for an item [A; ai+1 : : :aj] we get

the the following simpli�ed description of QCYK:

T
0 = f[A; i; j] j A 2 N ^ 0 � i � j ^ yield(�) 2 ��

^

9� 2 Trees(G) : root(�) = A ^ yield (�) 2 ��

^ jyield(�)j = j � ig;

D(10) = f[a!ai] ` [A; i� 1; i] j A!a 2 Pg;

D(20) = f[B; i; j]; [C; j; k] ` [A; i; k] j A!BC 2 Pg;

D0 = D(10) [D(20):

There is but one di�erence with the conventional description of the CYK schema:

only those items [A; i; j] are in the domain for which there is at least one tree

� 2 [A; i; j]. It could happen, for example, that A only produces strings of even

length. In that case, items [A; i; j] with odd values of j � i must be excluded from

the domain. An empty congruence class is a contradiction in terms and violates

the underlying mathematical theory. In Section 4.5 we will see how to deal with

this problem from a practical point of view. 2

We have now clari�ed the ontological status of an item: a congruence class of

trees in a deduction system. This is not unimportant. One of the advantages of

the formalism developed here is that any item-based parser can be described in it.

Di�erent algorithms use di�erent items; it is impossible to predict which particular

type of item is going to be used in a parsing algorithm that will be discovered next

week. For that reason we need such an ontological understanding. Whatever new

type of parsing items somebody is going to introduce someday, it will capture

those partial speci�cations of trees that matter for the deduction relation. That

is, trees satisfying the same partial speci�cation are congruent.

When it comes to the use of items in the description of practical parsing

schemata, we can simplify matters a lot. In the next section we will specify the

domain of a parsing schema directly as a set of items, rather than a quotient of a

domain of trees.

74 4. Item-based parsing schemata

4.4 Item-based parsing schemata

Having stated that | in principle | item-based parsing schemata can be de-

scribed as quotients of tree-based parsing schemata, we will now take a much

more practical approach. We may interpret an item as a partial speci�cation of a

tree. If there is a set of trees that conforms to this partial speci�cation, then this

set comprises an equivalence class (or indeed a congruence class) in the domain

of trees for the grammar. An anomaly that may occur, however, is that such a

partial speci�cation is inconsistent : there is not a single tree that satis�es the

speci�cation. Hence, such an item must be associated with an empty set of trees.

A parsing system will be called regular if it is (equivalent to) a quotient system.

The theory of Section 4.3 is only de�ned on regular subsystems. For practical

applications the di�erence is a minor one: for all parsing schemata that we will

deal with, one can argue that the introduction of inconsistent items does not a�ect

the correctness of the schema. We will treat this problem at length in 4.5.

We will now proceed to de�ne item-based parsing schemata (in the sequel sim-

ply called parsing schemata) in much the same way as tree-based parsing schemata

were introduced in Section 3.5. For the domain of a system we do not take a subset

of Trees(G) but a subset of a partition of Trees(G)

A partition �(X) � }(X) is a collection of pairwise disjunctive non-empty

subsets of X such that every x 2 X is contained in some � 2 �(X). Every

partition � de�nes an equivalence relation �� by

x �� y if there is a � 2 �(X) such that fx; yg � �:

And reversed, if � is an equivalence relation on X then X=� is a partition of X.

De�nition 4.17 (item set)

Let Trees(G) be the set of trees for some context-free grammar G. A set I 2

}(Trees(G)) is called an item set if there is a partition � of Trees(G) such that

I � �(Trees(G)) [f;g. 2

De�nition 4.18 (types of items)

Let I be an item set.

� An item � 2 I is called empty if � = ;.

� A non-empty item � 2 I is called completed if, for each � 2 �, � is a marked

parse tree for some sentence.

� A non-empty item � 2 I is called intermediate if, for each � 2 �, � is a not a

marked parse tree for any sentence.

� An item � 2 I is called mixed if there are �; � 2 � such that � is a marked

parse tree and � is not a marked parse tree. 2

4.4 Item-based parsing schemata 75

De�nition 4.19 (regular and semiregular item set)

An item set I is called regular if it contains neither mixed items nor the empty

item.

An item set I is called semiregular if it does not contain mixed items. 2

De�nition 4.20 (�nal items)

Let � be a partition of Trees(G) for some context-free grammar G, a1 : : :an 2 ��

a string. The set of �nal items F
(n)

G;� for a string of length n is de�ned by2

F
(n)

G;� = f� 2 �(Trees(G) j 9� 2 � : � 2 P
(n)

G g:

The set of correct �nal items CG;� for a string a1 : : : an is de�ned by

CG;�(a1 : : :an) = f� 2 �(Trees(G)) j 9� 2 � : � 2 PG(a1 : : :an)g: 2

The intention of De�nition 4.20 should be clear. An item-based parser will be

correct if all correct �nal items can be deduced from H and no other �nal items.

After these preliminaries, the following de�nitions will not come as a surprise.

De�nition 4.21 ((instantiated) parsing system)

Let G be a context-free grammar and a1 : : : an 2 �� an arbitrary string. A deduc-

tion system hI;H;Di is called an instantiated parsing system for G and a1 : : :an
when the following conditions are satis�ed:

(i) I = I(G;�) is an item set,

(ii) F
(n)

G;� � I,

(iii) [a!ai] 2 H for each ai, 1 � i � n. 2

De�nition 4.22 (correct parsing system)

An instantiated parsing system hI;H;Di for a grammar G and a string a1 : : :an
is correct if the enhanced deduction system

hI;H;F
(n)

G;�; CG;�(a1 : : :an); Di

is correct. 2

De�nition 4.23 (uninstantiated parsing system)

Let G be a context-free grammar. An uninstantiated parsing system for G is

a triple hI;K; Di where K : ��!}(}(Trees(G))) is a function such that hI;

K(a1 : : :an); Di is a parsing system for each a1 : : :an 2 ��.

An uninstantiated parsing system hI;K; Di is correct if hI;K(a1 : : :an); Di is cor-

rect for each a1 : : :an 2 ��. 2

2See De�nition 3.11 for P
(n)

G
and P

G
(a1 : : : an).

76 4. Item-based parsing schemata

We will not make a clear distinction between instantiated and uninstantiated pars-

ing systems and write P(a1 : : :an) or simply P to denote both.

De�nition 4.24 (parsing schema)

A a parsing schema P for a class of grammars CG is a function that assigns an

uninstantiated parsing system to every grammar G 2 CG.

P is correct if, for each G 2 CG, the uninstantiated parsing system P(G) is correct.

2

De�nition 4.25 (regular parsing schemata)

A parsing system hI;H;Di is regular if I is a regular item set.

A parsing schema P for a class of grammars CG is regular if, for each G 2 CG and

each a1 : : :an 2 ��, the parsing system P(G)(a1 : : :an) is regular. 2

De�nition 4.26 (the function K)

In all examples of parsing systems and schemata we will use the the same function

K, de�ned by

K(a1 : : : an) = f[a!ai] j a = aig [f[#!#
0
]; [$!$n+1]g:

As a more conventional notation for hypothesis items we will write [a; i � 1; i]

rather than [a!ai]. The end-of-sentence marker is denoted by [$; n; n + 1], the

beginning-of-sentence marker by [#;�1; 0]. 2

As we have �xed the function K, as usual, one only needs to specify I(G;�) and

D(G) for an arbitrary grammar G and a partition �(G) of Trees(G) in order to

give a full speci�cation of a parsing schema. For each grammar G 2 CG and string

a1 : : : an 2 �� the schema materializes to a deduction system

P(G)(a1 : : :an) = hI(G;�);K(a1 : : : an); D(G)i:

For the reader who really wants to know what kind of object a recognition

schema is, in terms of set theory, it is remarked that the universal class of parsing

schemata can be characterized as a sub-class of

(CG ! (}(}(U)) � (Sym�
!}(}(U))) � }(}�n(}(U))� }(U))))

Again, the fact that the universal class of parsing schemata can be formally de�ned

is rather more important than the particular structure of this type.

Example 4.27 (the CYK parsing schema)

At last, we de�ne an item-based parsing schema CYK by giving an item-based

parsing system PCYK for arbitrary grammars G 2 CNF .

Let [A; i; j] be an abbreviated notation for an item [A; ai+1 : : : aj]. Then PCYK
is de�ned by

4.5 The relation between Sections 4.3 and 4.4 77

I = f[A; i; j] j A 2 N ^ 0 � i < jg;

D(1) = f[a; i� 1; i] ` [A; i� 1; i] j A!a 2 Pg;

D(2) = f[B; i; j]; [C; j; k] ` [A; i; k] j A!BC 2 Pg;

D = D(1) [D(2):

Note the di�erence with Example 4.16, where the domain contained only those

items such that there is a tree that �ts the item. Here we do allow items for which

such a tree does not exist, hence CYK is not a regular parsing schema. But in

the sequel we will show that CYK is semiregular, which is good enough for all

practical purposes.

Thus we have obtained a CYK schema within the setting of a formal theory of

parsing schemata that conforms to the intuitive CYK deduction system presented

in Example 3.20. 2

4.5 The relation between Sections 4.3 and 4.4

A pain in the neck in the development of our theory so far is the problem of the

empty item. We will now address this problem in some more detail and argue that

it can be ignored for all practical purposes.

Let A be a nonterminal that produces strings of even length. Then the item

[A; 0; 3] | the set of trees hA ; a1a2a3i for arbitrary a1a2a3 | is empty. Many

items can be empty, clearly. If, for example, B does not produce trees with a

yield shorter than 4, the item [B; 0; 3] is empty as well. By de�nition, there is

only one empty set. Hence, as items are sets, empty items must be identical. This

seems counter-intuitive, to say the least, because the reasons for which [B; 0; 3] is

invalid are quite di�erent from the reasons for which [A; 0; 3] can't be deduced.

This problem can be handled in several ways.

� The fundamental solution is to make a distinction between items and item de-

scriptions. Such an approach is chosen in the formalization of feature struc-

tures (cf. [Kasper and Rounds, 1986], [Rounds and Kasper, 1986]), where a

distinction is made between feature structures and feature descriptions.

In this context this is not an attractive option, however, because it carries

the obligation to formally de�ne a rather more complicated item description

language, based on a notion of constraints on trees rather than sets of trees.

Moreover, using sets of trees as the fundamental notion is more general, be-

cause whatever constraint language is used to denote such constraints, these

implicitly de�ne sets of trees.

78 4. Item-based parsing schemata

� The easy way out is not to allow the empty item in the domain. This is

mathematically the most elegant option. To any de�nition of an item set I

one could add that the parsing systems operates only on Inf;g. Moreover,

if the empty item is not part of the domain, it can be shown that every item-

based parsing schema is in fact a quotient of a tree-based parsing schema,

and the theories of Sections 4.3 and 4.4 are equivalent.

From a practical point of view, however, this option has the disadvantage

that it is not clear a priori which items are empty. Moreover, a parsing

schema for, e.g., the CYK algorithm would not be fully compatible with the

canonical algorithm as found in the literature, where empty items are not

excluded from the domain.

� The last option, �nally, is simply to live with the fact that there are di�erent

denotations of a single empty item. This does not do any real harm, as long

as it is guaranteed that the empty item is invalid, which seems a reasonable

demand. When a parsing system is constructed by de�ning a regular con-

gruence relation on a tree-based parsing system, it is logically impossible to

arrive at a system that contains the empty item as an entity in the domain.

Hence it surely can't be deduced.

This option is the most attractive, because it allows the most simple de�ni-

tion of parsing systems in a way that does not strain the compatibility with

algorithm descriptions found in the literature.

To our framework it adds the burden that we always have to show that the

empty item is invalid. This is hardly a burden, however, as for any sensible

parsing system this property comes about naturally.3

Thus we allow a liberal form of parsing system speci�cation, which may contain

di�erent denotations of the empty item. Every deduction step in a parsing system

that is actually going to be used for the construction of a parse will be contained

in the regular subsystem.

A more positive way of phrasing this design choice for our theory is the fol-

lowing. We acknowledge that there is a di�erence between items and item de-

scriptions, but we do not prescribe a speci�c item description language. Any item

description language that allows to de�ne parsing schemata is acceptable, because

the theorems are based on the items themselves, rather than on item descriptions.

De�nition 4.28 (semiregular parsing systems and schemata)

A parsing system hI;H;Di is semiregular if

3If it is ensured that the empty item (in all its denotations) is invalid, then, obviously, intro-
duction of the empty item does not a�ect the correctness of a system. This will be the case in

all parsing schemata that are introduced in the sequel. It is not a necessary condition, however.
One could envisage parsing systems in which some denotations of the empty item can be deduced

under more speci�c conditions.

4.5 The relation between Sections 4.3 and 4.4 79

(i) I is a semiregular item set

(ii) ; 62 V(P).

A parsing schema P for a class of grammars CG is semiregular if, for each G 2 CG

and each a1 : : :an 2 ��, the parsing system P(G)(a1 : : :an) is regular. 2

De�nition 4.29 (regular subsystems and schemata)

Let P= hI;H;Di be a semiregular parsing system.

We de�ne a regular subsystem P
r = hI

r ;H;Dri by

I
r = In;,

Dr = f(Y; x) 2 D j Y � I
r
^ x 2 Irg.

For a semiregular parsing schema P for a class of grammar CG we de�ne a regular

subschema Pr by

Pr(G)(a1 : : : an) = (P(G)(a1 : : :an))
r

2

Corollary 4.30

A semiregular parsing system P is sound / complete / correct if and only if its

regular subsystem P
r is sound / complete / correct.

A semiregular parsing system P is sound / complete / correct if and only if its

regular subsystem Pr is sound / complete / correct. 2

In Section 6.1 we will see that restricting a semi-regular parsing system to a fully

regular parsing system is a special case of a more general operation called step

deletion.

Although it is obvious how to regularize a semi-regular system in theory, this

might not be so obvious in practice. When one is confronted with a speci�cation of

an item set by means of constraints, it might be rather hard to establish whether

a tree exists that satis�es those constraints. Hence, as we have extensively argued

above, we settle for semi-regular parsing schemata. As long as the semi-regularity

constraint is obeyed | which is typically a trivial property | we may safely ignore

the empty item and its di�erent denotations.

We can now formally clarify the relation between the quotient parsing schemata

of Section 4.3 and item-based parsing schemata of Section 4.4. We cannot describe,

in general, semiregular parsing schemata as quotients, but we can do so with

their regular subschemata. Everything outside a semiregular subschema has been

added for convenience of description but is of no importance to the correctness of

a schema.

80 4. Item-based parsing schemata

Theorem 4.31 (regular parsing systems are quotient systems)

Let P= hI;H;Di be a regular parsing system. Then there is a tree-based parsing

system T= hTP;H
0; DPi and a regular congruence relation �=Pon Tsuch that4

hTP;H
0; DPi = �=P� hI;H;Di:

Moreover, P is correct if and only if hTP;H
0; DPi = �=Pis correct.

Proof. We de�ne

TP= f� 2 Trees(G) j 9� 2 I : � 2 �g;

H0 = fha!aii j [a!ai] 2 Hg;

�=P= f(�; �) 2 T � T j 9� 2 I : �; � 2 �g;

DP= f�1; : : : ; �k ` � 2 }�n(TP[H 0) � TPj [�1]; : : : ; [�k] ` [�] 2 Dg:

It follows straightforwardly that �= is a regular congruence relation and that

hTP;H
0; DPi= �=P� hI;H;Di:

It is left to the reader to verify that correctness ofP, (according to De�nitions 4.22{

4.24) and correctness of hTP;H;DPi= �=P(according to De�nitions 3.27{3.29 and

Corollary 4.15) are equivalent. 2

4.6 Examples of parsing schemata

After all the theory in the previous sections, we will now present a few examples

of nontrivial parsing schemata. We de�ne schemata for the Earley parser (both

the conventional one with top-down prediction and the bottom-up Earley parser

introduced without prediction) and the Left-Corner parser.

The reader is reminded that all parsing schemata have the same function K

that assigns hypotheses to parsing systems (cf. De�nition 4.26). We will slightly

simplify the notation of the hypotheses. For an arbitrary string a1 : : :an we de�ne

a set of hypotheses

K(a1 : : : an) = f[a; i� 1; i] j a = aig [f[$; n; n+ 1]; [#;�1; 0]g:

The beginning-of-sentence marker and end-of-sentence marker are in fact not

needed here. In Chapter 6 some examples are given where these hypotheses are

essential.

4 We anticipate the formal de�nition of isomorphism (�) that will be given in De�nition 5.4.

It should be obvious what is meant.

4.6 Examples of parsing schemata 81

Before we start describing the parsing schemata, a few more notational con-

ventions are useful. Note that, by de�nition, D � }�n(H [X) �X. Thus, if we

write (parts of) D in the format

fy1 : : : yk ` xg

without any further conditions, this is to be interpreted as

fy1 : : : yk ` x j fy1; : : : ykg � H [X ^ x 2 Xg:

Furthermore, the sets I and D in a parsing system will be subscripted with the

name of the schema of which this system is an instantiation. A parsing system

Earley(G)(a1 : : :an), for example, will be denoted as a triple hIEarley;H;DEarleyi.

The subscripts can always be deleted if the name of the parsing schema is clear

from the context.

Often, I and D are de�ned as a union of di�erent subsets. These subsets are

always indicated with superscripts. Superscripts may also be deleted if it is not

relevant in some context which particular subset of I or D is being referred to.

Example 4.32 (the Earley parsing schema)

We will de�ne a parsing schema Earley on CFG by giving a parsing system for

an arbitrary grammar G 2 CFG.

We will �rst de�ne a parsing schema using the conventional Earley items, and after-

wards show that the set of Earley items for a particular grammar is a semiregular

item set according to De�nition 4.19.

The parsing schema Earley is de�ned by specifying a parsing system PEarley for

an arbitrary grammar G as follows:

IEarley = f[A!���; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f` [S!�; 0; 0]g;

DScan = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DPred = f[A!��B�; i; j] ` [B!�; j; j]g;

DEarley = DInit [DScan [DCompl [DPred:

DScan, DCompl, and DPred conform to the scan, complete, and predict steps, re-

spectively, of the Earley algorithm.

A schematic illustration of the complete step is given in Figure 4.1.

Deduction steps DEarley add the axioms that are needed to start the parser, in

addition to the hypotheses derived from the sentence.

82 4. Item-based parsing schemata

�
�

�
�

�
�

�
�
�
�
�
�

A
A
Q
Q
Q

i j

B �

: : :

A

,

�
�
�
�

A
A
A
A

j k

B

`

�
�

�
�

�
�

A
A
Q
Q
Q

i k

�

: : :

A

Figure 4.1: The complete step

The set of �nal items of PEarley (cf. De�nition 4.20) and the subset of correct �nal

items are:

F = f[S!�; 0; n]g;

C = f[S!�; 0; n] j)�a1 : : :ang:

The set of valid items that is computed by the system is:

V(PEarley) = f[A!���; i; j] j �)�ai+1 : : :aj ^

S)�a1 : : :aiA for some g;

conforming to the Earley parser as it is known from the literature.

It is clear that a �nal item in F is valid if and only if it is a correct �nal item

from C. Therefore, PEarley is correct for arbitrary G and a1 : : :an and Earley is a

correct parsing schema.

An Earley item [A!���; i; j] is, in fact, a shorthand notation for the set of trees

de�ned by

[A!h�; ai+1 : : :aji �]:

Special attention has to be paid to the case � = ". Such items have no marked

leaf but can only be applied at a speci�c position in the sentence. Hence these are

left-marked items, i.e., items containing left-marked trees (cf. De�nition 3.12):

[j : hA!�i]:

Having introduced the concept of left-marked items we could also denote them in

the format of arbitrary Earley items

[A!h"; aj+1 : : :aji �]

4.6 Examples of parsing schemata 83

which gives us a uniform notation for all Earley items. Thus the formal de�nition

of the item set for a particular grammar G is

IEarley(G) = f[A!h�; ai+1 : : : aji �] j A!�� 2 P ^ 0 � i � jg;

the operations can be de�ned accordingly. In order to establish the semiregularity

of this set, we have to check that items are pairwise disjunct and that mixed items

do not occur. All these properties follow straightforwardly from the de�nition. 2

The parsing schema Earley is an abstraction not only of Earley's algorithm. In

Chapter 12 we will show that it is also the underlying parsing schema of an LR(0)

parser.

Before we continue with the examples, one more point of friction between

theory and practice has to be cleared up. As a persistent design choice, we have

formulated parsing systems hI;H;Di in such a way that I and D depend on the

grammar G but not on the string and H depends on the string a1 : : : an but not

on the grammar. A consequence of this design choice is that some parsing systems

contain a (countably in�nite) number of items with position markers beyond the

length of the string that is to be parsed. In the bottom-up version of Earley, for

example, any item [A!��; j; j] is valid. The existence of this item is a consequence

of the grammar, not a consequence of the sentence. Hence it can be derived by a

deduction step without antecedents ` [A!��; j; j].

Practically speaking, this is no problem at all. It is obvious that any sen-

sible implementation would only consider recognizing those valid items that fall

within the positions spanned by the sentence. But from a theoretical perspective,

however, this design is not elegant. Several solutions can be considered.

The �rst option is to consider items of the form [A!��; j; j] as hypotheses,

rather than consequents of antecedentless deduction steps. Then H contains such

items only with j � n, and the problem has been solved. A minor disadvantage

of this approach is that de�nitions of parsing schemata would have to be based on

instantiated, rather than uninstantiated parsing systems. Hypotheses now depend

on G as well as a1 : : :an. A more substantial nuisance would be that we introduce

a degree of freedom in the speci�cation of parsing systems, allowing some kind of

information to be coded either in H or in D. This leads to syntactically di�erent,

equivalent denotations of a single schema. As a consequence, we would have to

de�ne a normal form for the equivalence relation in order to compare (normal

forms of) di�erent parsing schemata.

A second option is to replace antecedentless deduction steps ` [A!��; j; j] by

deduction steps [$; n; n + 1] ` [A!��; j; j] only for j � n. While this would be

adequate for the examples here, the ad hoc character of such a de�nition causes

problems in Chapter 6 where we discuss �ltering. It would prohibit an elegant

description of the Earley schema as a top-down �ltered variant of the bottom-up

Earley schema.

84 4. Item-based parsing schemata

As in previous cases we will choose a pragmatic solution, simply by arguing

that the problem is not relevant for really existing parsers. Rather than the set

of valid items V(P) we restrict our attention to the subset of relevant valid items

V
�n(P) for a sentence of length n.

De�nition 4.33 (relevant valid items)

Let P= hI;H;Di be a parsing system. An item � 2 I is irrelevant for (a string

of length) n if every tree � 2 � contains some marked terminal aj with j > n or

is a left- or right-marked tree (cf. De�nition 3.12) marked with some j > n. We

write I>n for the irrelevant items of I.

The set of relevant items I
�n is de�ned by I�n = InI

>n.

The set of relevant valid items V
�n is given by V�n = V \ I

�n. 2

In the following examples of parsing schemata we will only be concerned with

relevant valid items.

Example 4.34 (the buE parsing schema)

An Earley parser proceeds through a sentence from left to right. A bottom-up

parallel Earley can start at each word in the sentence in parallel. To that end, a

larger set of initial deduction steps is added and the predict steps are discarded.

As usual, we de�ne the parsing schema buE by specifying a parsing system PbuE

for an arbitrary grammar G:

IbuE = f[A!���; i; j] j A!�� 2 P ^ 0 � i � jg = IEarley;

DInit = f` [A!��; j; j]g;

DScan = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]g = DScan
Earley;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g = D
Compl
Earley;

DbuE = DInit [DScan [DCompl:

It is left to the reader to verify that the set of relevant valid items is given by

V
�n(PbuE) = f[A!���; i; j] 2 I

�n
buE j �)

�ai+1 : : :ajg:

It is obvious, again, that from �nal items [S!�; 0; n] for a string a1 : : :an, only

those are valid for which)�a1 : : :an. Irrelevant items surely do not contain parse

trees, hence we conclude that the parsing schema is correct. 2

Example 4.35 (the buLC parsing schema)

The parsing schema buE is correct but it contains some slight redundancies. Sup-

pose that we have a valid item [A!B��; i; j]. How is such an item deduced? The

4.6 Examples of parsing schemata 85

�
�
�
�

A
A
A
A

i j

B

`
�
�
�
�

A
A
A
A

i j

B

�
�
A
A
Q
Q
Q
�

: : :

A

Figure 4.2: The (bottom-up) left-corner step

only way to establish the validity of this item, is by using a valid item [B!�; i; j]

as an antecedent in the complete step

[A!�B�; i; i]; [B!�; i; j] ` [A!B��; i; j]:

The item [A!�B�; i; i] does not play any signi�cant role in the bottom-up variant

of Earley's algorithm; it is valid by de�nition. No harm is done if we delete it as

an antecedent and replace the complete step by an | in this case { equivalent

deduction step

[B!�; i; j] ` [A!B��; i; j];

as illustrated in Figure 4.2.

A similar argument applies to items of the form [A!a��; i; j] and the appropriate

scan step. Hence, most items with a dot in leftmost position serve no purpose,

other than satisfying the buE speci�cation for historic reasons. (It should be

noted, though, that items with a dot in leftmost postion are indispensible if the

right-hand side of the production is empty. The above argument does not relate

to items of the form [A!�; j; j].)

Based on these considerations, we de�ne a parsing schema that very similar to buE

but slightly more economic. This schema is called buLC, which is an abbreviation

of a bottom-up Left Corner schema. As usual, we specify a parsing system for an

arbitrary grammar G 2 CFG, as follows:

I
(1) = f[A!X���; i; j] j A!X�� 2 P ^ 0 � i � jg;

I
(2) = f[A!�; j; j] j A!" 2 P ^ j � 0g;

IbuLC = I
(1)

[I
(2);

D" = f` [A!�; j; j]g;

86 4. Item-based parsing schemata

DLC(a) = f[a; j � 1; j] ` [B!a��; j � 1; j]g;

DLC(A) = f[A!��; i; j] ` [B!A��; i; j]g;

DScan = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DbuLC = D" [DLC(a) [DLC(A) [DScan [DCompl:

From the above discussion it follows that

V
�n(PbuLC) = V

�n(PbuE) \ IbuLC

= f[A!���; i; j] 2 I
�n
buLC j �)�ai+1 : : :aj

^ (� 6= " _ � = ")g

and that the buLC schema is correct. 2

Example 4.36 (the LC parsing schema)

In the above example we de�ned buLC as a slightlymore economic version of buE.

If a constituent has been recognized completely, i.e., we found an item [B!�; i; j],

we use a left-corner step and recognize an item [A!B��; i; j]. This could be done,

because, in the buE schema, the item [A!�B�; i; i] is always valid. If we try

the same transformation on the (left-to-right) Earley schema, things get slightly

more complicated. It is not the case that [A!�B�; i; i] is always valid. Hence, the

replacement of a deduction

[A!�B�; i; i]; [B!�; i; j] ` [A!B��; i; j]

by a deduction [B!�; i; j] ` [A!B��; i; j] should be allowed only in those cases

where [A!�B�; i; i] is actually valid. Under which conditions is this the case? The

item [A!�B�; i; i] is predicted by Earley only if there is some item of the form

[C!��A�; h; i]

It could be the case, however, that � = ". Then this is one of the items that is not

contained in the domain of the buLC schema and we continue the search for an

item that licences the validity of [C!�A�; i; i]. This search can end in two ways:

either we �nd some item with the dot not in leftmost position, or (only in case

i = 0) we may move all the way up to [S!�; 0; 0]. This can be formalized as

follows.

The left corner is the leftmost symbol in the right-hand side of a production.

A!X� has left corner X; an empty production A!" has left corner ".

The relation >` on N � (V [f"g) is de�ned by

A >` U if there is a production p = A!� 2 P with U the left corner of p:

4.6 Examples of parsing schemata 87

�
�

�
�

�
�

�
�
�
�
�
�

A
A
Q
Q
Q

h i

D �

: : :

C

,

�
�
�
�

A
A
A
A

i j

B

`

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

A
A
@
@

HHHH
D �

: : :

C

h i j

�
�

�

@
@
@

B

�
�

A
A
Q
Q
Q
�

: : :

A

>�

`

Figure 4.3: The (predictive) left-corner step

The transitive and reexive closure of >` is denoted >�

` .

It is clear that [A!�B�; i; i] will be recognized by the Earley algorithm if there is

some valid item [C!��E�; h; i] with E >�

` A. Moreover, there is such an item with

� 6= ", unless, perhaps, i = 0 and E = S. In order to deal with this exceptional

case, we must make sure that items of the form [S!�; 0; 0] are in the domain, all

other items of the from [A!��; i; i] with � 6= " are dispensable. To replace the

missing complete steps, we introduce left-corner steps as follows:

[C!��E�; h; i]; [B!�; i; j] ` [A!B�; i; j] only if E >�

` A:

A schematic illustration is shown in Figure 4.3.

A similar argument holds for items of the form [A!a��; j � 1; j].

Thus we obtain a full formal description of the LC schema, as usual by de�ning a

parsing system for arbitrary G 2 CFG:

I
(1) = f[A!X���; i; j] j A!X�� 2 P ^ 0 � i � jg;

I
(2) = f[A!�; j; j] j A!" 2 P ^ j � 0g;

I
(3) = f[S!�; 0; 0] j S! 2 Pg;

ILC = I
(1)

[I
(2)
[I

(3);

DInit = f` [S!�; 0; 0]g;

DLCA = f[C!�E�; h; i]; [A!��; i; j] ` [B!A��; i; j] j E >�` Bg;

88 4. Item-based parsing schemata

DLCa = f[C!�E�; h; i]; [a; i; i+ 1] ` [B!a��; i; i+ 1] j E >�` Bg;

DLC" = f[C!�E�; h; i];` [B!�; i; i] j E >�` Bg;

DScan = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DLC = DInit [DLC(a) [DLC(A) [DLC(") [DScan [DCompl:

From the above discussion it follows that

V
�n(PLC) = V

�n(PEarley) \ ILC

= f[A!���; i; j] 2 I
�n
LC j �)�ai+1 : : :aj ^

S)�a1 : : :aiA for some g:

It should be mentioned that this schema reects the (generalized) Left-Corner

algorithm as it has been described in the literature. Deterministic LC parsing

has been de�ned by Rosenkrantz and Lewis [1970]. See also the Ph.D. Thesis of

op den Akker [1988]. Generalized LC parsers have been described by Matsumoto

[1983], Nederhof [1993], and Sikkel and op den Akker [1992b].

When it comes down to implementing this schema, the e�ciency can be in-

creased by adding additional predict items of the form [D; i], denoting the fact

that some item of the form [C!��D�; h; i] has been found, abstracting from items

in I similar to the way in which items abstract from trees in T . A more detailed

treatment will be given in Chapter 10. 2

There are some obvious relations between the parsing schemata buE, Earley,

buLC and LC. The de�nitions of these parsing schemata are not \stand-alone"

de�nitions, in a way. We have de�ned buLC and LC, informally, by applying

transformations to the parsing schemata buE and Earley. Subsequently we have

given formal de�nitions that satisfy the intuitive understanding. In Chapters 5

and 6 we will formalize such transformations and discuss under which conditions

the correctness of a schema is invariant under a transformation.

4.7 Conclusion

We have generalized the theory of tree-based parsing schemata of Chapter 3 to

(item-based) parsing schemata. Tree based parsing schemata can be seen as a

special case in which every item comprises a single tree.

In this chapter we have seen that there is a tension between theoretical elegance

and pragmatic convenience. In order to cover schemata for parsing algorithms that

4.7 Conclusion 89

appear in the literature we have gone so far as to allow items that are inconsistent

with the (most elegant) underlying theory. Subsequently we have argued that the

di�erence is not relevant for practical parsers. Semiregularity is a rather natural

property of parsing schemata. A minor problem, but nevertheless another sore

point, is the distinction between relevant and irrelevant valid items. Here we have

settled for a minor practical inconvenience in order to avoid a major theoretical

inelegance. In both cases we have extensively motivated our design choices and we

have argued that di�erent choices, looking like plausible alternatives, have more

serious drawbacks.

These frictions in the theory are caused by the sometimes incompatible interests

of theory and practice. If we would look at it from a purely theoretical perspective,

it is very simple to come up with a smaller and rather more elegant theory, in

which only regular parsing schemata are considered. Our major concern, however,

is that the theory can be applied for the description of practical parsers; the theory

is not a purpose in itself. That the parsing schemata framework can be applied

to describe a variety of parsers will be shown in Chapter 6, where half a dozen

parsing algorithms known from the literature are �tted into a single taxonomy of

Earley-related parsing schemata. More involved applications will follow in Part

III.

90 4. Item-based parsing schemata

Chapter 5

Re�nement and

generalization

In Chapters 3 and 4 we have formally established the notion of a parsing schema,

and presented some examples. In this chapter and the next one we will discuss

relations between parsing schemata.

The main notion that we are concerned with here is re�nement . A parsing

schema is a re�nement of another schema when it allows more deductions or when

it performs the same deductions in smaller steps. This notion has a twofold ap-

plication. Firstly, we can identify some chains of re�nements, describing schemata

for parsers that exist in the literature. Secondly, if a parser is known to be correct,

the re�nement relation can be used to prove the correctness of another parser.

In Section 5.1, we go back to the more abstract setting of enhanced deduction

systems and establish some general notions like homomorphism and isomorphism.

Next, in 5.2, we formally introduce the notion of re�nement for parsing systems

and schemata. Some examples of re�nements are presented in 5.3. In 5.4 we intro-

duce generalization, i.e., applying a parsing schema to a larger class of grammars.

Generalization usually includes re�nement as well.

In Chapter 6, subsequently, we will study the notion of a �lter . Filters are, in

a general sense, the inverse of re�nement: a �ltered system makes less deductions

or contracts sequences of deductions to single deduction steps. Using re�nements

and �lters, a large variety of parsers can be described within a single taxonomy. In

Section 6.6 an overview is given that summarizes the relation between the di�erent

kinds of relations introduced in Chapters 5 and 6.

91

92 5. Re�nement and generalization

5.1 Mappings between deduction systems

In Section 5.1 we are concerned with mappings between arbitrary enhanced deduc-

tion systems, say E1 and E2. In each case we will assume that E1 = hX1;H1; F1; C1;

D1i and E2 = hX2;H2; F2; C2; D2i. Furthermore, we write �1 for �(E1) �2 for

�(E2), V1 for V(E1) and V2 for V(E2). Similar de�nitions apply to deduction sys-

tems D 1 and D 2; the only thing that has to be changed is deleting all conditions on

Fi and Ci. But we are primarily interested in enhanced systems, here, because an

interesting aspect of mappings between deduction systems is whether correctness

is preserved.

De�nition 5.1 (pointwise extensions of a function)

Let E1 and E2 be deduction systems, and f : H1 [X1!H2 [X2 a function. We

can de�ne a function f̂ : }(H1 [X1)!}(H2 [X2) that maps sets of entities into

sets of entities by pointwise application, i.e.,

f̂(Y) = fx2 2 X2 j 9x1 � Y : f(x1) = x2g:

A function f that maps H1 [X1 to H2 [X2 can also be extended to a function

f 0 : }�n(H1 [X1) �X1!}�n(H2 [X2)�X2

that maps deduction steps to deduction steps by pointwise application:

f 0(Y; x) = (f̂ (Y); f(x)):

f 0 can be extended to f̂ 0, similarly, mapping sets of deduction steps into sets of

deduction steps, by analogy to the extension of f into f̂ .

In a similar vein, we can extend f into a function f 00 that maps deduction sequences

in E1 to deduction sequences in E2. (Note, however, that there is a consistency

issue here, because it is not generally guaranteed that f 00(Y ` x1 ` : : : ` xj) is

a valid deduction sequence in E2!) And, �nally, we can maps sets of deduction

sequences into sets of deduction sequences by a function f̂ 00. When no confusion

can arise about the domain of a function, we simply write f for f 0, f 00, f̂ , f̂ 0 and

f̂ 00 as well. 2

The purpose of the functions f̂ 0 and f̂ 00 as de�ned above is that we can use them

to state conditions on functions in a concise, well-de�ned and intuitively clear

manner. If we state, for example, that

f(D1) = D2

this means

(Y2; x2) 2 D2 if and only if there are Y1 2 }�n(H1 [X1) and x1 2 X1 such

that f̂ (Y1) = Y2 and f(x1) = x2 and (Y1; x1) 2 D1.

5.1 Mappings between deduction systems 93

Similarly,

f(�1) = �2

is a clear and concise notation for

Y2 `2 x1 `2 : : : `2 xj if and only if there are Y1 2 }�n(H1 [X1) with

f̂ (Y1) = Y2 and x01; : : : ; x
0

j 2 X1 with f(xi) = x0i for 1 � i � j such that

Y1 `1 x
0

1 `1 : : : `1 x
0

j .

Mappings | and other relations | between deduction systems can have several

interesting properties. First of all, the usual properties on relations may apply.

Relations like re�nement, extension, generalization and various types of �lters all

are transitive and reexive. Reexivity is always trivial, transitivity sometimes. In

Section 5.2 we will see that transitivity of re�nement is not straightforward. Other

properties that relations may have is preservation of soundness / completeness /

correctness. We discuss relations between deduction systems here, as opposed to

relations on (the domain of) a single deduction system.

De�nition 5.2 (preservation properties of relations)

Let E1 and E2 be arbitrary enhanced deduction systems. A relation R between

deduction systems is called soundness / completeness / correctness preserving if

E1R E2 and the soundness / completeness / correctness of E1 are su�cient condi-

tions for the soundness / completeness / correctness of E2.

Let P1 and P2 be arbitrary semiregular parsing schemata for some class of gram-

mars CG. A relation R between parsing schemata is called soundness / com-

pleteness / correctness preserving , if P1RP2 and the soundness / completeness

/ correctness of P1 are su�cient conditions for the soundness / completeness /

correctness of P2. 2

De�nition 5.3 (homomorphism)

A function f : H1 [X1!H2 [X2 is called a homomorphism from E1 to E2 if:

(i) f(H1) � H2,

(ii) f(X1nF1) � X2nF2,

(iii) f(F1) � F2,

(iv) f(C1) � C2,

(v) f(D1) � D2. 2

De�nition 5.4 (isomorphism)

A homomorphism f : X1 [H1!X2 [H2 is called an isomorphism from E1 to E2

if an inverse function f�1 : X2!X1 exists and f�1 is a homomorphism from E2

to E1.

94 5. Re�nement and generalization

As a practical notation we write X1 �f X2 if f is a bijective function from X1 to

X2. We write E1 �f E2 if f is an isomorphism from E1 to E2. We write E1 � E2

if there is a function f such that E1 �f E2.

Two parsing schemata P1 and P2 are isomorphic on a class of grammars CG if for

each G 2 CG and for each a1 : : :an 2 �� it holds that

P1(G)(a1 : : : an) � P2(G)(a1 : : : an):

We write P1 � P2 if P1 and P2 are isomorphic. 2

The inverse of an isomorphism is also an isomorphism. Furthermore, an iso-

morphism is correctness preserving. A homomorphism, in general, is not correct-

ness preserving. The soundness can be violated by adding deduction steps to E2
that validate entities in F2nC2. The completeness can be violated by adding new,

invalid entities to C2.

Preservation of completeness can be guaranteed by demanding that the ho-

momorphism be surjective, i.e., f(H1) = H2, f(X1nF1) = X2nF2, f(F1) = F2,

f(C1) = C2, f(D1) = D2. As soundness is always the trivial part of a proof, com-

pleteness preservation is almost as useful as correctness preservation. But in the

sequel we will make much use of a slightly more restricted kind of homomorphism

that does preserve correctness as well.

De�nition 5.5 (item contraction function)

A function f : X1 [H1!X2 [H2 is called an item contraction from E1 to E2 if

(i) H1 �f H2

(ii) f(X1nF1) = X2nF2

(iii) f(F1) = F2

(iv) f(C1) = C2

(v) f(�1) = �2 2

The reason that we demand that deduction sequences are mapped onto deduc-

tion sequences, i.e., f(�1) = �2, rather than f(D1) = D2, will become clear

in Section 5.2 where item re�nement, the inverse of item contraction, is de�ned.

The mapping of deduction sequences, rather than deduction steps, is needed to

establish transitivity of a more general notion of re�nement that also includes step

re�nement.

Corollary 5.6

Let E1 be an enhanced deduction system, �= a regular congruence relation on E .

Let f�= : E!E=�= be the canonical function that maps x onto [x]. Then f�= is an

item contraction function. 2

5.2 Re�nement: a formal approach 95

We can apply item contraction directly to parsing schemata, but it only makes

sense to do so on regular schemata. We can extend the idea to semiregular parsing

schemata by only considering the regular subschemata.

De�nition 5.7 (the relations
ic
�! and

ic
=))

Let P1 and P2 be semiregular parsing systems. The relation P1
ic
�! P2 holds if

there is an item contraction function f : Pr1!P
r
2 between the regular subsystems

of P1 and P2.

Let P1 and P2 be semiregular parsing schemata for some class of grammars CG.

The relation P1
ic
=) P2 holds if, for each G 2 CG and a1 : : :an 2 �� it holds that

P1(G)(a1 : : :an)
ic
�! P2(G)(a1 : : :an). 2

Corollary 5.8

The relation
ic
�! is transitive, reexive, and correctness preserving;

The relation
ic
=) is transitive, reexive, and correctness preserving. 2

Corollary 5.9

The following statements hold:

� Let Tbe a tree-based parsing system, �= a regular congruence relation on T.

Then T
ic
�! T=�=.

� Let Tbe a tree-based parsing system, �=1 an �=2 regular congruence relations

on Tand �=1 � �=2 (i.e., x �=1 x
0 implies x �=2 x

0).

Then T=�=1
ic
�! T=�=2.

� Let P1, P2 be semiregular parsing schemata, �= a regular congruence relation

on Pr1, and P
r
1=
�= � P

r
2.

Then P1
ic
�! P2. 2

5.2 Re�nement: a formal approach

We can see Earley-type algorithms as a re�nement of CYK-type algorithms. The

latter recognize constituents, whereas the former also deal with partial constit-

uents. A single step in a CYK parser corresponds to several steps in an Earley

parser.

More generally, but still informally, re�nement of parsing systems (and hence

parsing schemata) can be seen as consisting of two steps:

� item re�nement : Some items are split up into smaller items; the set of

deduction steps is adapted accordingly.

96 5. Re�nement and generalization

� step re�nement : Single deduction steps are re�ned into series of deduction

steps. To this end, new items can be added as well.

We will de�ne item re�nement and step re�nement separately and afterwards

de�ne re�nement in such a way that it is the simultaneous transitive closure of

both kinds of re�nement.

De�nition 5.10 (item re�nement)

Let P1 = hI1;H;D1i and P2 = hI2;H;D2i be semiregular parsing systems. The

relation P1
ir
�! P2 holds if P2

ic
�! P1.

Let P1, P2 be semiregular parsing schemata for a class of grammar CG. The

relation P1
ir
=) P2 holds if P2

ic
=) P1. 2

Item re�nement, in general, is the reverse of item contraction. But in the

remainder of Chapter 5 we are speci�cally concerned with parsing systems and

schemata, not deduction systems in general. In this more speci�c setting, the

conditions for item contraction and re�nement can be simpli�ed. Firstly, we notice

that the hypotheses will always be the same, hence the condition H1 �f H2 can

be deleted. Secondly, we will introduce a simple regularity constraint on functions,

that allows us to discard a few condition from De�nition 5.5.

De�nition 5.11 (regular item mapping)

Let P1, P2 be semiregular parsing systems. A function f : Ir1!Ir2 is called a

regular item mapping if for all � 2 Ir1 and all � 2 � it holds that � 2 f(�). 2

Lemma 5.12

Let P1, P2 be semiregular item sets, If there is a regular item mapping f : Ir2!Ir1
such that

(i) Ir1 = f(Ir2),

(ii) �r
1 = f(�r

2),

then P1
ir
�! P2.

Proof.

We must show that the following inequalities hold:

(iii) f(I2nF
(n)
2) � I1nF

(n)
1 ,

(iv) I1nF
(n)
1 � f(I2nF

(n)
2),

(v) f(F (n)
2) � F (n)

1 ,

(vi) F
(n)
1 � f(F

(n)
2),

5.2 Re�nement: a formal approach 97

(vii) f(C2) � C1,

(viii) C1 � f(C2).

Inequalities (iii), (v), and (vii) follow straight from the de�nition.

Inequalities (iv) and (vi) follow from (iii) and (v) in combination with (i) and the

fact that Ir1 is regular.
For (viii) we have to realize that [C1 = [C2 (both are equal to PG(a1 : : : an)

by de�nition). Take an arbitrary �i 2 C1 and let � 2 �1. Then there must be

some �2 2 C2 with � 2 �2. Because f is a regular item mapping, it must hold that

f(�2) = �1. 2

Example 5.13

Item re�nement is usually combined with step re�nement. Therefore an example

of item re�nement in isolation may seem somewhat arti�cial.

Consider the parsing schema CYK for grammars in CNF , cf. Example 4.27. We

can replace items of the form [A; i; j] by items of the form [A!�; i; j], for each

production A!�. If there are di�erent productions with the same left-hand side,

the CYK item is split up accordingly. Thus we get a parsing schema CYK' by

de�ning a system PCYK' for arbitrary G 2 CNF :

ICYK' = f[A!�; i; j] j A!� 2 P ^ 0 � i � jg;

D(1) = f[a; j � 1; j] ` [A!a; j � 1; j]g;

D(2) = f[B!�; i; j]; [C!; j; k] ` [A!BC; i; k]g;

DCYK' = D(1) [D(2):

It is left to the reader to verify that CYK' is a correct parsing schema. 2

If P1
ir
�! P2 then the correctness of P2 implies the correctness of P1 (Corol-

lary 5.8). The reverse, however is not true. Most item re�nements that are de�ned

in a sensible manner will preserve correctness as well. But if one really wants to

re�ne a correct system into an incorrect one, that can be done. An example of

what can go wrong (only if mischief is intended) is the following.

Let us re�ne CYK items [A; i; j] into items [A!�; i; j], where [A!�; i; j] denotes

a set of trees [A!h�; ai+1 : : :aji]. Suppose, now, that we have a grammar

S!AB j BB
A!a;

B!b:

In the CYK system for this grammar we have a deduction step

[A; 0; 1]; [B; 1; 2] ` [S; 0; 2]:

98 5. Re�nement and generalization

It is possible to re�ne this into a deduction step

[A!a; 0; 1]; [B!b; 1; 2] ` [S!BB; 0; 2];

and re�ne the other deduction steps as in Example 5.13. The resulting system is

neither sound nor complete. For a string ab, the item [S!AB; 0; 2] that contains

the (only) parse tree will not be recognized, whereas the �nal item [S!BB; 0; 2]

that does not contain a parse tree is valid in this system.

A general method to make sure that item re�nement is correctness preserving

is the following. Let P1 be a correct parsing system, and T the underlying tree-

based system of Pr1, i.e., there is some regular congruence relation �= such that

P
r
1 = T=�=1. if P1 is correct, it is usually not di�cult to establish that Tis correct

as well. One has to redo the correctness proof based on trees, rather than items.

If one de�nes a re�nement P2 of P1 such that Pr2 =T=�=2, then P2 must be correct

as well. This is clearly the case in Example 5.13, CYK and CYK' both have

TCYK as underlying tree-based parsing schema.

We will now turn to step re�nement, which is rather more easy to de�ne than

item re�nement. Step re�nement is completeness preserving. For practical appli-

cations this is almost as good as correctness preservation, because soundness is

always the easy part and completeness the hard part of a correctness proof.

De�nition 5.14 (step re�nement)

Let P1, P2 be semiregular parsing systems. The relation P1
sr
�! P2 holds if

(i) I1 � I2,

(ii) `�1 � `�2 ,

We call P2 a step re�nement of P1.

Let P1 and P2 be semiregular parsing schemata for some class of grammars CG.
The relation P1

sr
=) P2 holds if, for each G 2 CG and for each a1 : : : an 2 ��,

P1(G)(a1 : : : an)
sr
�! P2(G)(a1 : : :an). 2

Note that a su�cient condition for (ii) is `1 � `�2 ; or even D1 � `�2 . We have

written `�1 in the de�nition only because of the symmetry. The motivation for this

desire for symmetry will become clear in Chapter 6; we de�ne a series of relations,

all with a similar symmetry.

Corollary 5.15

The relation
sr
�! is reexive, transitive and completeness preserving.

The relation
sr
=) is reexive, transitive and completeness preserving. 2

5.2 Re�nement: a formal approach 99

Example 5.16 We de�ne a parsing schemaECYK, that is a (bottom-up) Earley-

like re�nement of CYK. Or, to be more precise, a step re�nement of CYK'. The

schema ECYK is de�ned only for grammars in CNF . It is in fact identical to

buE restricted to CNF . For a grammar G in Chomsky Normal Form we de�ne a

parsing system PECYK by

IECYK = f[A!���; i; j] j A!�� 2 P; 0 � i � jg;

DInit = f` [A!��; j; j]g;

DScan = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DECYK = DInit [DScan [DCompl:

In order to prove that CYK'
sr
=) ECYK it su�ces to show, for an arbitrary

grammar G 2 CNF , that

(i) ICYK' � IECYK

(ii) for each y1; : : : ; yk ` x 2 DCYK' it holds that y1; : : : ; yk `�ECYK.

We identify an item [A!�; i; j] 2 ICYK' with an item [A!��; i; j] 2 IECYK.
Then, obviously, ICYK' � IECYK.
As to the second condition, let [a; j � 1; j] ` [A!a; j � 1; j] 2 DCYK'. Then, in

PECYK, we have

` [A!�a; j � 1; j � 1]

[A!�a; j � 1; j � 1]; [a; j � 1; j] ` [A!a�; j � 1; j]

hence [a; j � 1; j] `�ECYK [A!a�; j � 1; j].

For a deduction step [B!�; i; j]; [C!; j; k] ` [A!BC; i; k] 2 DCYK' we have

` [A!�BC; i; i];

[A!�BC; i; i]; [B!��; i; j] ` [A!B�C; i; j];

[A!B�C; i; j]; [C!�; j; k] ` [A!BC�; i; k];

hence we have shown that [B!��; i; j]; [C!�; j; k] `�ECYK [A!BC�; i; k]: 2

We can now de�ne re�nement as a combination of item re�nement and step

re�nement. Re�nement is a transitive relation, but this time transitivity is not

obvious from the de�nitions.

100 5. Re�nement and generalization

De�nition 5.17 (re�nement)

Let P1 and P2 be semiregular parsing systems. The relation P1
ref
�! P2 holds if

there is a parsing system P3 such that P1
ir
�! P3

sr
�! P2.

Let P1 and P2 be semiregular parsing schemata. The relation P1
ref
=) P2 holds if

there is a parsing schema P3 such that P1
ir
=) P3

sr
=) P2. 2

Lemma 5.18 (re�nement lemma)

Let P1, P2, P3 be semiregular parsing systems such that P1
sr
�! P2

ir
�! P3. Then

there is a system P4 such that P1
ir
�! P4

sr
�! P3.

Let P1, P2, P3 be semiregular parsing schemata for some class of grammars CG.

Let P1
sr
=) P2

ir
=) P3. Then there is a schema P4 such that P1

ir
=) P4

sr
=) P3.

Proof.

We only prove the lemma for parsing systems. Generalization to parsing schemata

is as usual.

Let f : Ir3!Ir2 be the item contraction function from P
r
3 to P

r
2. Then we de�ne P4

by

I4 = fx 2 I3 j f(x) 2 I1g;

D4 = f(Y; x) 2 }�n(H [I4)� I4 j f((Y; x)) 2 Dr
1 ^ Y `�3 xg:

Although item contractions are usually speci�ed by regular item mappings, this

is not a requirement. So, in order to prove that P1
ir
�! P4 we have to show that

the conditions for item contraction in De�nition 5.5, applied to the notion of a

semiregular parsing schema, are satis�ed. That is, we must establish

(i) Ir1nF
(n)
1 � f(Ir4nF

(n)
4),

(ii) f(Ir4nF
(n)
4) � Ir1nF

(n)
1 ,

(iii) F
(n)
1 � f(F

(n)
4),

(iv) f(F
(n)
4) � F (n)

1 ,

(v) f(C4) � C1,

(vi) C1 � f(C4),

(vii) �r
1 � f(�r

4),

(viii) f(�r
4) � �r

1.

Moreover, in order to prove that P4
sr
�! P3 we have to show that

5.2 Re�nement: a formal approach 101

(ix) I4 � I3,

(x) `�4 � `�3 .

The inequalities (ii), (iv), (ix), and (x) follow directly from the de�nition of P4,

(viii) is a straightforward extension.

The inequalities (v) and (vi) follow from the fact that C4 = C3 and C1 = C2.
In order to prove (i) and (iii) we will �rst establish and auxiliary result:

(xi) Ir1 � f(Ir4).

A proof of (xi) is straightforward:

Let x 2 Ir1. Then also x 2 Ir2, hence there is an x0 2 Ir3 with f(x0) = x.

Then x0 2 Ir4.
Hence it follows that x 2 f(Ir4).

The inequalities (i) and (iii) follow from (ii) and (iv) combined with (xi) and the

regularity of Ir1.
So we are left with (vii), the only case for which a proof requires some e�ort.

We will use an ad-hoc notation Y `� x1 `� : : : `� xj 2 � which means that

there are (possibly empty) sequences zi;1; : : : ; zi;mi
for 1 � i � j such that

Y ` z1;1 ` : : : ` z1;m1
` x1 ` : : : ` zj;1 ` : : : ` zj;mj

` xj 2 �:

Now we prove (vii) as follows. Let Y `1 x1 `1 : : : `1 xj 2 �r
1: Then it holds

that

Y `�2 x1 `
�

2 : : : `
�

2 xj 2 �r
2:

Moreover, there are Y 0 2 }�n(H [I3) � I3 with f(Y 0) = Y and x01; : : : ; x
0

j

with f(x01) = x1, : : : ; f(x
0

j) = xj, such that

Y 0 `�3 x
0

1 `
�

3 : : : `
�

3 x
0

j 2 �r
3:

Then, clearly, it follows that Y 0 `4 x01 `4 : : : `4 x0j 2 �r
4; hence we have

shown that

Y `1 x1 `1 : : : `1 xj 2 f(�r
3):

We conclude from (i){(viii) that P1
ir
�! P4 and from (ix){(x) that P4

sr
�! P3. 2

Theorem 5.19

The relations
ref
�! and

ref
=) are transitive and reexive.

Proof: directly from Lemma 5.18. 2

102 5. Re�nement and generalization

5.3 Some examples of re�nement

We will informally discuss a few simple examples of re�nement and in one case

give a proper proof. Every re�nement can be split up into two separate steps: item

re�nement and step re�nement. Each of those steps can simply be the identity

relation.

Example 5.20 (GCYK
ref
=) buE)

Generalized CYK is a variant of CYK that can handle arbitrary context-free gram-

mars. The parsing schema GCYK is speci�ed by a parsing system PGCYK for

arbitrary G 2 CFG, as follows.

IGCYK = f[A; i; j] j A 2 N; 0 � i � jg;

D(1;2) = f[X1; i0; i1]; : : : ; [Xk; ik�1; ik] ` [A; i0; ik] j
A!X1 : : :Xk 2 P ^ k � 1g;

D" = f ` [A; j; j] j A!" 2 Pg;

DGCYK = D(1;2) [D":

Note that for grammars G 2 CNF it holds that PGCYK = PCYK (cf. Exam-

ple 4.27). The deduction steps in D(1;2) cover productions of the form A!BC

and productions of the form A!a. For grammars in Chomsky Normal Form, D"

is empty.

Now we claim that a parsing system PbuE (cf. Example 4.34) is a re�nement

of PGCYK. As a �rst step, we re�ne CYK items [A; i; j] into Earley items of the

form [A!��; i; j] for every production A!� for a given left-hand side A. If there

is more than one production for A this means a proper item re�nement, otherwise

it is just a di�erent notation for the same partial speci�cation of a tree with root

A and yield ai+1 : : : aj . The terminal items representing the string are denoted

[a; i� 1; i] as ever. Thus we obtain an item-re�ned system PGCYK':

IGCYK' = f[A!��; i; j] j A!� 2 P; 0 � i � jg;

D(1;2) = f[X1; i0; i1]; : : : ; [Xk; ik�1; ik] ` [A!��; i0; ik] j
A!X1 : : :Xk 2 P ^ k � 1g

where [Xm; im�1; im] denotes [a; im�1; im] if Xm = a

and [Xm; im�1; im] denotes [B!��; im�1; im] if Xm = B,

D" = f ` [A!�; j; j]g;

DGCYK' = D(1;2) [D":

Next, we can straightforwardly re�ne PGCYK' into PbuE. Take, for example, an

item of the form [A!bBC�; i; k]. This is valid in PGCYK' i� there are valid items

[b; i; i + 1], [B!��; i + 1; j] and [C!�; j; k]. In PbuE an item [A!�bBC; i; i] is

always valid. Using the antecedents of the GCYK deduction step one by one, we

deduce a sequence of items [A!b�BC; i; i+ 1], [A!bB�C; i; j], [A!bBC�; i; k]. 2

5.3 Some examples of re�nement 103

Example 5.21 (GCYK
ref
=) buLC

ref
=) buE)

In Example 4.35 we have introduced a parsing systemPbuLC from a systemPbuE by

discarding most of the items with a dot in leftmost position. The set of deduction

steps was adapted accordingly. Reversely, one could derive PbuE from PbuLC by

inserting the missing items with a dot in leftmost position and adapting the set

of deduction steps. It is left to the reader to verify that PbuLC
sr
�! PbuE and thus

PbuLC
ref
�! PbuE. Hence, in general, buLC

ref
�! buE.

Similar to Example 5.20, it can also be shown that GCYK
ref
�! buLC. 2

Example 5.22 (LC
ref
=) Earley)

Similar to Example 5.21, one can show that Earley (cf. Example 4.32) is in fact

a re�nement of LC (cf. Example 4.36). The LC schema is more complicated than

buLC, and we will use the occasion to give a somewhat more formal proof.

Proof.

We will prove that PLC
sr
�! PEarley: for an arbitrary grammar G 2 CFG.

We abbreviate PEarley to PE . We have to prove

(i) ILC � IE ,

(ii) `�LC � `�E .

Inequality (i) follows immediately from the de�nitions. Rather than (ii) we will

prove

(iii) if (Y; x) 2 DLC then Y `�E x,

from which (ii) follows. For the sets of deduction steps DInit
LC , DScan

LC and D
Compl
LC ,

this is a direct consequence of (i). It remains to be shown that (iii) holds for

D
LC(A)
LC , D

LC(a)
LC and D

LC(")
LC . We will work out the D

LC(A)
LC case in detail, the

other cases are similar.

Let

[C0!�C�; h; i]; [A!��; i; j] ` [B!A��; i; j] 2 D
LC(A)
LC :

Then, by the de�nition of D
LC(A)
LC , it holds that C >�

` B. Assume C >k
` B. Then,

by the Earley predict we �nd

[C0!�C�; h; i] `kE [B!�A�; i; i]

and, with a complete step,

[B!�A�; i; i]; [A!��; i; j] `E [B!A��; i; j]:

Hence we have shown that [C0!�C�; h; i]; [A!��; i; j] `k+1E [B!A��; i; j]: 2

104 5. Re�nement and generalization

All the above examples involve parsing schemata that are de�ned on CFG.
We will now look at a few parsing schemata that are de�ned only on CNF . In

Section 5.4, subsequently, we will extend CNF schemata to CFG schemata.

In Section 2.3 we have seen an informal example of Rytter's algorithm [Rytter,

1985], [Gibbons and Rytter, 1988]. An almost identical algorithm was described

earlier by Brent and Goldschlager [1984], but received little attention because it

was published in a less widely circulated journal. Both algorithms are described

by a single parsing schema that we will call Rytter, as this is the more familiar

algorithm. We will come back to Rytter's algorithm in Chapter 14.

Example 5.23 (CYK
ref
=) Rytter)

Apart from the terminal items in H, a Rytter parsing schema uses two types of

items. Firstly there are the ordinary CYK items [A; i; j], which comprise completed

trees of the form hA ; ai+1 : : :aji. We also call them complete items in this

context. Secondly, we use almost-complete items for trees of the form

hA; ah+1 : : :aiBaj+1 : : :aki:

Such items are denoted [A; h; k;B; i; j]. An almost-complete item can be seen as

a CYK item with a gap. If [A; h; k; B; i; j] is valid, and another valid item [B; i; j]

can be deduced, then the gap can be �lled and [A; h; k] is also valid. The gap can

also be �lled with another almost-complete item; The result is an almost-complete

item, again, but with a smaller gap. A complete item, �nally, can be extended to an

almost-complete item by combining it with a production. If there is a production

A!BC 2 P then a complete item [B; i; j] can be extended to an almost-complete

item [A; i; k;C; j; k] for arbitrary k (and similarly, an almost-complete item with a

leftmost gap can be created if a valid item is the rightmost right-hand side symbol

of a production). As usual, we do not worry about the fact that k can be extended

beyond the sentence length n. For any given sentence one could restrict the set of

items to the set of relevant items for the appropriate sentence length.

For a grammar G 2 CNF we de�ne a parsing schema PRytter as follows.

I(1) = f[A; i; j] j A 2 N ^ 0 < i < jg;

I(2) = f[A; h; k;B; i; j] j A;B 2 N ^ 0 < h < i < j < kg;

IRytter = I(1) [I(2);

D(0) = f[a; j � 1; j] ` [A; j � 1; j] j A!a 2 Pg;

D(1a) = f[B; i; j] ` [A; i; k;C; j; k] j A!BC 2 Pg;

D(1b) = f[C; j; k] ` [A; i; k;B; i; j] j A!BC 2 Pg;

D(2) = f[A; h; k;B; i; j]; [B; i; j] ` [A; h; k]g

5.3 Some examples of re�nement 105

D(3) = f[A; h;m;B; i; l]; [B; i; l;C; j; k] ` [A; h;m;C; j; k]g

DRytter = D(0) [D(1a) [D(1b) [D(2) [D(3):

The operations associated with the sets of deduction steps D(1), D(2), and D(3),

are originally called activate, pebble, and square, respectively. These terms stem

from a \pebble" problem, where a pebble has to be laid on every node in a tree. In

this context these original names do not make sense and we rather use numbers.

It is a trivial that PCYK
sr
�! PRytter. 2

In the above example, an intermediate parsing system between PCYK and

PRytter can be de�ned simply by discarding D(3) from PRytter. Let's call this PR2
for short. The system PR2 is a step re�nement of PCYK in the most literal sense; a

CYK deduction step is split up in two steps. It is also clear that PR2
sr
�! PRytter,

in a more degenerate way; DRytter simply contains DR2 as a subset.

The problem of such a conceivable parsing system R2, however, is that it

combines disadvantages of both schemata. CYK on the one hand, �nishes in

linear time (in a parallel implementation) with relatively few resources. Rytter,

on the other hand, needs much more resources in order to guarantee that all valid

items are deduced in logarithmic time. The R2 schema has the same formal

complexity bounds as CYK, but when constant factors are taken into account it

simply needs more resources | in time, space and number of processing units |

than CYK.

A more useful intermediate algorithm located between CYK and Rytter's algo-

rithm is described in [Sikkel, forthcoming]: a parallel algorithm for online parsing

that uses O(n2) processors to parse the next word in constant time. The classical

CYK algorithm can be implemented in O(n) time using O(n2) processors, as was

shown by Kosaraju [1969, 1975], but only if the entire sentence is known when

parsing begins. The online parallel CYK algorithm| assuming that the parser is

fast enough to do all processing before the next word arrives | �nishes in constant

time after the last word. The parsing schema for this algorithm, called OCYK,

extends CYK with almost-complete items that have the gap in rightmost position.

Unlike almost-complete Rytter items, there is no need to specify a position to

which this rightmost gap extends.

Example 5.24 (CYK
ref
=) OCYK

ref
=) Rytter)

In addition to [A; i; j] as an abbreviation for [A; ai+1 : : :aj], we write [A; i; j;B]

to denote an item

[A; ai+1 : : :ajB]:

We specify a parsing schema OCYK, as usual, by de�ning a parsing system

POCYK for an arbitrary grammar G 2 CNF , as follows.

I(1) = f[A; i; j] j A 2 N ^ 0 � i < jg;

106 5. Re�nement and generalization

I(2) = f[A; i; j;B] j A;B 2 N ^ 0 � i < jg;

IOCYK = I(1) [I(2);

D(0) = f[a; j � 1; j] ` [A; j � 1; j] j A!a 2 Pg;

D(1) = f[B; i; j] ` [A; i; j;C] j A!BC 2 Pg;

D(2) = f[A; i; j;B]; [B; j; k] ` [A; i; k]g

D(3) = f[A; i; j;B]; [B; j; k;C] ` [A; i; k;C]g

DOCYK = D(0) [D(1) [D(2) [D(3):

Clearly, PCYK
sr
�! POCYK.

Re�ning POCYK into PR2 (and subsequently to PRytter) is not limited to step

re�nement, this time. Items [A; i; j;B] have to be re�ned into items [A; i; j;B; j; k]

�rst. 2

5.4 Generalization

Generalization comprises two notions that may be used in combination. Firstly,

a re�nement, as discussed in 5.2 is a generalization; the re�ned system is a richer

deduction system. Secondly, and more importantly, a parsing schema for a narrow

class of grammars can be extended to a larger class of grammars. Often this can't

be done straightforwardly (otherwise the parsing schema would simply have been

de�ned on a larger class of grammars) but involves re�nement as well. As a canon-

ical example, we will see that the bottom-up Earley schema is a generalization of

the CYK schema.

De�nition 5.25 (extension)

Let P1 be a parsing schema for a class of grammars CG1, P2 a parsing schema for

a class of grammars CG2 and CG1 � CG2.

Then the relationP1
ext
=) P2 holds if, for each grammar in CG1 and each a1 : : :an 2

��,

P1(G)(a1 : : : an) � P2(G)(a1 : : : an) 2

De�nition 5.26 (generalization)

Let P1, P2 be semiregular parsing schemata.

Then the relation P1
gen
=) P2 holds if there is a semiregular parsing schema P3

such that P1
ref
=) P3

ext
=) P2. 2

5.5 Conclusion 107

Unlike the re�nement lemma, it is obvious that if P1
ext
=) P2

ref
=) P3 there is a

P4 such that P1
ref
=) P4

ext
=) P3. The schema P4 is obtained simply by restricting

P3 to the smaller class of grammars for which P1 is de�ned.

Corollary 5.27

The relation
gen
=) is transitive and reexive. 2

Example 5.28 (CYK
gen
=) buE)

In Example 5.20 the Generalized CYK schema GCYK has been de�ned. It has

in fact been shown that

CYK
ext
=) GCYK

ref
=) buE: 2

Above we have argued that
ext
=)

ref
=) can always be replaced by

ref
=)

ext
=) .

Swapping the relations in Example 5.28 yields the intermediate system ECYK

that has been de�ned in Example 5.16:

CYK
ref
=) ECYK

ext
=) buE.

5.5 Conclusion

We have introduced re�nement and extension as relations that can be used to

describe a parsing schema as a generalization of another schema. Re�nement is

the more involved notion; extension simply means applying a schema to a larger

class of grammars. Generalization is a combination of re�nement and extension.

By means of some practical examples, involving algorithms known from the

computer science literature, we have shown that re�nement is a useful notion

for relating parsing schemata to one another. It should be noted, however, that

re�nements are described between existing schemata. There is no recipe that

allows to derive a better schema from a given schema by applying some kind of

re�nement.

Re�nement means more items, more deduction steps, and more things to com-

pute. If a re�nement produces a \better" schema, then the improvement will be

qualitative. Re�ning Generalized CYK to Earley is such an improvement, because

the complexity of the algorithm can be reduced by considering partially recognized

productions, rather than only completely recognized productions. If a re�nement

does not obtain such a qualitative improvement, it is likely to make a parser less

e�cient because more work has to be carried out.

In the next chapter we will be concerned with �ltering, i.e., improving the

e�ciency by discarding parts of a parsing system. Filtering is in some ways the

inverse of re�nement. It is used for quantitative improvements in the e�ciency:

diminishing the number of valid items and deductions that have to be applied.

108 5. Re�nement and generalization

Chapter 6

Filtering

Sometimes it is possible to argue that some deduction steps in a parsing system

cannot contribute to the recognition of a parse. If such deduction steps exist,
no harm is done when these are deleted from the parsing system. Such opti-
mizations usually do not lead to a decrease in complexity bounds (otherwise the
algorithm was ine�cient indeed), but it is always worthwhile when a (sometimes
large) percentage of computation time can be saved by cutting out redundancies.
Optimization in this sense is called �ltering . In this section we will de�ne various
types of �ltering and see that several �lters known from the literature are special
cases of the general approach that is presented here.

The optimization obtained by a �lter does not always come for free. The cost,
usually, is a more complicated description of the parsing schema. The �ltered
schema may state explicitly that from a clearly de�ned set of deduction steps only
a rather more complicatedly de�ned subset remains.

Another side e�ect of �ltering is that it is often at odds with parallel imple-
mentation. The time e�ciency of a parallel parser may crucially depend on a
certain redundancy with respect to other resources: space and number of comput-
ing units. A typical example is the Earley parser. In its standard form, the string
is necessarily processed from left to right. If the top-down �lter is deleted (i.e.,
the predict operator is discarded and any item that could be predicted is added
in advance) one can start parsing at every position in the sentence in parallel. In
that case it is not hard to de�ne a parser that uses O(n) time on O(n2) processors.
This speed-up can only be obtained at the cost of redundancy in predicted items.

A more dramatic example where redundancy is essential to speed up a parallel
algorithm is Rytter's algorithm (cf. Examples 2.3, 5.23), It does a vast amount
of redundant work, increasing the number of processors from O(n3) to O(n6), in
order to �nish in logarithmic time. For each binary branching parse tree there is

109

110 6. Filtering

some way in which it can be constructed in parallel in a logarithmic number of
steps. But as it can't be foretold which way is successful, one has to try all the
ways.

Cutting out redundancy may eliminate possibilities for parallel processing, but
it is all the more useful in sequential implementations.

We will make a general distinction between static and dynamic �ltering. At a
practical level, in computer implementations of parsing algorithms, static �ltering
can be done compile-time, while dynamic �ltering is done run-time. This is what
is suggested by the terms \static" and \dynamic". On our more abstract level of
parsing schemata, the characteristic di�erence is that static �ltering is independent
of the particular string that has to be parsed, whereas the e�ect of dynamic �ltering
does depend on the string. A static �lter can be applied when an uninstantiated

parsing schema contains items and/or derivation steps that are redundant for every
input string. These can simply be discarded. Dynamic �ltering, on top of that,
allows certain derivation steps to be applied only if it follows from an already
explored context in the string that such steps are meaningful in that context.
That is, additional antecedents are required to derive a consequent.

As a running example in Chapter 6 we will use (a schema for) the algorithm
of de Vreught and Honig [1989, 1991] and de�ne several �lters on it. As we will
see along the way, the algorithm is related to Earley's algorithm and the LC
algorithm. The main di�erence is that constituents need not be recognized in a
left-to-right manner. The items used by de Vreught and Honig are double dotted

items of the form [A!����; i; j], with the part � of the right-hand-side already
expanded and � and still to be recognized. Such an item denotes the set of
trees [A!� h� ; ai+1 : : :ai] (cf. Section 4.3). The algorithm of de Vreught and
Honig has two basic steps, called include and concatenate. The idea of both steps
is illustrated in Figure 6.1. The formal de�nition should be clear.

Example 6.1 (dVH1, the algorithm of de Vreught and Honig)
For an arbitrary grammar G 2 CFG and string a1 : : : an a derivation system
PdVH1 is de�ned by

IdVH1 = f[A!����; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f[a; j � 1; j] ` [A!��a�; j � 1; j]g;

D" = f ` [B!��; j; j]g;

DIncl = f[B!���; i; j] ` [A!��B�; i; j]g;

DConcat = f[A!���1��2; i; j]; [A!��1��2�; j; k] ` [A!���1�2�; i; k]g;

DdVH1 = DInit
[D"

[DIncl
[DConcat:

111

�
�
�
�

A
A
A
A

i j

B

`
�
�
�
�

A
A
A
A

i j

B

�
�

�
Q
Q
Q

�
�
A
A

A

�

: : :

: : :

����
�

�
A
A

HHHH
�
�
�
�
�
�
i j

�

: : :

�1 �2

: : :

,

HHHH
@
@

�
�

����
A
A
A
A
A
A

j k

��1

: : :

�2
: : :

`

����

HHHH
�

�
@
@

�
�
�
�
�
�

A
A
A
A
A
A

i k

�

: : :

�1�2
: : :

Figure 6.1: The include and concatenate operations of dVH

If follows easily (cf. de Vreught and Honig [1989]) that

V
�n(PdVH1) = f[A!����; i; j] 2 I j �)�ai+1 : : : aj ^

(� 6= " _� = ") g:

Note that D" allows deduction of [B!��; j; j] also for j > n, because D is inde-
pendent of the sentence length. Hence we are only interested in the set V�n of
valid items with position markers not exceeding n. (cf. De�nition 4.33). 2

Throughout Section 6 we write Pi to denote a parsing system Pi = hIi;Hi; Dii.
We will de�ne the re�nement relations on parsing systems P, rather than on gen-
eral deduction system D , because the de�nitions are motivated by applications in
parsing. It should be clear, however, that all these relations have obvious gen-
eralizations to arbitrary deduction systems D and enhanced deduction systems
E .

As a �rst, almost trivial example of static �ltering we will look at redundancy
elimination in Section 6.1. Static and dynamic �ltering are illustrated and formally
de�ned in Sections 6.2 and 6.3, respectively. In 6.4 we will look at an even stronger
form of �ltering called step contraction, in which sets of deduction steps can be
contracted to single deduction steps.

112 6. Filtering

Step contraction is the inverse of step re�nement that has been introduced
in Section 5.2. A typical example of step contraction has been given already in
Section 4.6, where a Left-Corner parsing schema was obtained as an optimization
of an Earley parsing schema. In 6.5 a taxonomy of Earley-related parsers is drawn
up, making use of the �lters de�ned in 6.2{6.4. Section 6.6, �nally gives a schematic
summary of all types of relations de�ned in Chapters 5 and 6.

6.1 Redundancy elimination

A very simple kind of static �ltering is redundancy elimination. If a parsing
system (or any other deduction system) contains steps that can be deleted without
a�ecting the validity of any item, these steps must be redundant. The same holds
for nonvalid items. As a typical example, an inconsistent item can be deleted.

De�nition 6.2 (redundancy elimination)

Let P1 and P2 be semiregular parsing systems. The relation P1
re
�! P2 holds if

(i) I1 � I2

(ii) D1 � D2,

(iii) V(P1) = V(P2).

Let P1 and P2 be semiregular parsing schemata for a class of grammars CG. The
relation P1

re
=) P2 holds if, for each G 2 CG and each a1 : : : an 2 ��,

P1(G)(a1 : : : an)
re
�! P2(G)(a1 : : :an). 2

By de�nition, redundancy elimination is correctness preserving.

Corollary 6.3

For any semiregular parsing system P it holds that P
re
�! P

r .
For any semiregular parsing schema P it holds that P

re
=) Pr. 2

Example 6.4 (dVH2, redundancy elimination)
We observe that DdVH1 is redundant, in the following way.
An item [A!��XY Z�; i; j] can be concatenated in two di�erent ways:

[A!��X�Y Z; i; k]; [A!�X�Y Z�; k; j] ` [A!��XY Z�; i; j];

[A!��XY �Z; i; l]; [A!�XY �Z�; l; j] ` [A!��XY Z�; i; j]:

Moreover, if [A!��XY Z�; i; j] is valid, then each of the four antecedents is also
valid for some value of k and l. Hence, if we delete the former deduction step from
D, the set of valid items is not a�ected.
In general, [A!����; i; j] with � a string of k symbols, k � 2, can be deduced in
k � 1 ways. All but one can be discarded. For an arbitrary grammar G 2 CFG a
parsing system PdVH2 is de�ned by

6.2 Static �ltering 113

IdVH2 = f[A!����; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f[a; j � 1; j] ` [A!��a�; j � 1; j]g;

D" = f` [B!��; j; j]g;

DIncl = f[B!���; i; j] ` [A!��B�; i; j]g;

DConcat = f[A!����X; i; j]; [A!���X�; j; k] ` [A!���X�; i; k]g;

DdVH2 = DInit
[D"

[DIncl
[DConcat:

It trivially holds that IdVH1 = IdVH2 and DdVH2 � DdVH1 Moreover from the
above argumentation we know that V(PdVH2) = V(PdVH1). As this holds for

arbitrary grammars, we conclude dVH1
re
=) dVH2. 2

6.2 Static �ltering

Static �ltering means no more and no less than discarding parts of a parsing
system (or, in general, a deduction system). This idea | and the following formal
de�nition | may seem gratuitous; correctness is preserved only if one can argue
that the deleted parts are indeed not relevant to the correctness of the system.
But this is precisely why it �ts into a general hierarchy of �ltering. Any �lter will
do, as long as one is able to argue that the remaining system is still complete.

De�nition 6.5 (static �ltering)

Let P1 and P2 be semiregular parsing systems. The relation P1
sf
�! P2 holds if

(i) I1 � I2

(ii) D1 � D2.

Let P1 and P2 be arbitrary parsing schemata for a class of grammars CG. The

relation P1
sf
=) P2 holds if, for each G 2 CG and each a1 : : :an 2 ��,

P1(G)(a1 : : :an)
sf
�! P2(G)(a1 : : : an). 2

It is obvious that the relations
sf
�! and

sf
=) are transitive and soundness pre-

serving. Unlike redundancy elimination, the completeness is not automatically
preserved by a static �lter. In order to prove that a speci�c static �lter preserves
correctness one should argue that the deleted valid items are indeed redundant.

114 6. Filtering

Example 6.6 (dVH3, static �ltering)
We will further optimize the parsing system PdVH2 for some arbitrary grammar
G. We observe that items of the form [A!����; i; j] with j�j � 1 and j�j � 2
are useless in PdVH2, in the sense that they do not occur as an antecedent in any
derivation step. Hence, these items can be discarded. This does e�ect the set of
valid items; some of the discarded items were valid. But, more importantly, none
of the discarded items is a �nal item (i.e., an item that indicates that a parse
exists, cf. De�nition 4.20).

Similarly, any item of the form [A!����; i; j] with j�j � 1, j�j � 2 and jj � 1
can concatenate to the right, but cannot contribute to the recognition of a �nal
item. The whole set

f[A!����; i; j] j j�j � 1 ^ j�j � 2g

can be considered useless; it does not contain any �nal item and items in this set

are used as antecedents only to deduce other items in this set. Hence we delete
this set, and discard all deduction steps that have one of these items as antecedent
or as consequent. The deduction system PdVH3 for an arbitrary grammar G is
de�ned by

I
(1) = f[A!��X�; i; j] j A!�X 2 P ^ 0 � i � jg

I
(2) = f[A!�X��; i; j] j A!X� 2 P ^ 0 � i � jg

I
(3) = f[A!��; j; j] j A!" 2 P ^ j � 0g

IdVH3 = I
(1)
[I

(2)
[I

(3)

DInit = f[a; j � 1; j] ` [A!��a�; j � 1; j]g;

D" = f` [B!��; j; j]g;

DIncl = f[B!���; i; j] ` [A!��B�; i; j]g;

DConcat = f[A!���X; i; j]; [A!��X�; j; k] ` [A!��X�; i; k]g;

DdVH3 = DInit
[D"

[DIncl
[DConcat:

From the above discussion it follows that

V
�n(D dVH3) = f[A!�X��; i; j] 2 I j X�)�ai+1 : : :ajg

[f[A!��X�; i; j] 2 I j X)�ai+1 : : :ajg:

Moreover, clearly, dVH2
sf
=) dVH3. 2

6.3 Dynamic �ltering 115

6.3 Dynamic �ltering

The purpose of �ltering is to reduce the work that needs to be done to derive all
valid entities. In static �ltering we did so by discarding \redundant" parts of the
derivation system. It is called static, because the redundancy is independent of the
particular string that is to be parsed. In a real parser this means that the �lter can
be applied compile-time. Dynamic �ltering is more powerful. The recognition of
items can be made dependent on the existence of other items. In this way context
can be taken into account. If we have, for example, an item [B!���; i; j] and a
production A!BC then we could restrict the deduction step

[B!���; i; j] ` [A!�B�C; i; j]

to those cases where aj+1 could be the �rst word of a string produced by C. That
is, we could replace the deduction by a set of deductions

[B!���; i; j]; [a; j+ 1; j] ` [A!�B�C; i; j]

only for those a such that a 2 First(C) (cf. De�nition 6.10). Hence, dynamic
�ltering, on a theoretical level, is simply adding antecedents to existing deductions.

In the following de�nition, static �ltering is a special subcase of dynamic �lter-
ing. This �ts the interpretation that static �ltering materializes to to compile-time
optimization and dynamic �ltering materializes to run-time optimization; an op-
timization that can be done compile-time could also be done run-time instead of
compile-time.

De�nition 6.7 (dynamic �ltering)

Let P1 and P2 be semiregular parsing systems. The relation P1
df
�! P2 holds if

(i) I1 � I2

(ii) `1 � `2.

Let P1 and P2 be semiregular parsing schemata for a class of grammars CG. The

relation P1
df
=) P2 holds if, for each G 2 CG and each a1 : : :an 2 ��,

P1(G)(a1 : : :an)
df
�! P2(G)(a1 : : :an). 2

Like with static �ltering, it is obvious that
df
�! and

df
=) are transitive and

soundness preserving.

Example 6.8 (buE
df
=) Earley)

The parsing schemata buE and Earley have been de�ned in Examples 4.34

and 4.32, respectively. In order to verify that buE
df
=) Earley holds, we com-

pare the sets DEarley and DbuE for an arbitrary grammar. The item sets are
identical.

116 6. Filtering

The scan and complete steps are identical in both schemata. For the predict and
init steps, it su�ces to verify that

[A!���; i; j] `E [B!�; j; j]

in PEarley holds only if

`buE [B!�; j; j]

in PbuE. This is evidently the case. 2

Example 6.9 (buLC
df
=) LC)

See Examples 4.35, 4.36 for the de�nitions of buLC and LC.
Similar to the previous example. 2

As another example of dynamic �ltering, we will look at the algorithm of de
Vreught and Honig again. The more sophisticated version of the algorithm uses
bottom-up �ltering , making use of a (one-position) left and right context. An
item [A!����; i; j] is recognized only when it can possibly contribute to a parse,
given the left context ai and the right context aj+1. We de�ne the set of context-
dependent items CI � I by

CI(G; a1 : : : an) = f[A!����; i; j] j
9�1; �2; �3; �4 : #S$)

��1A�2 ^ �1�)
��3ai^

�)�ai+1 : : :aj ^ �2)
�aj+1�4g:

Here we use, for the �rst time, the beginning-of-sentence and end-of-sentence
marker. These guarantee that every word, also the �rst and the last word, have
a left and right neighbour. The beginning-of-sentence marker could be deleted, at
the expense of formulating special constraints for i = 0. The use of the end-of-
sentence marker is essential, because it is the only way to de�ne the nonexistence
of the (n + 1)-st word.

We are to design the system PdVH3 now, in such a way that V�n(PdVH3) � CI.
But we cannot simply restrict the domain from I to CI, because CI does depend
on the string to be parsed and the domain must be independent of the sentence.
Hence we take a di�erent line and operationalize the test for membership of CI
within the parsing schema. We can simply follow de Vreught and Honig [1989]
using the functions first and follow [Aho and Ullman, 1977], and their right-
to-left counterparts last and precede.

De�nition 6.10 (Context, First, Follow, Last, Precede)
We will use First(�) and Last(�) only for strings � such that � 6)� ".1

1We take advantage of the fact that First(�) is used only for � that do not rewrite to (or
are) the empty string. In the more general, case were First is used in any context, one needs a
more complicated function

First(�) = fa j 9�; ; � : #S$)�
�� ^ �)�

a�g:

Similarly for Last.

6.3 Dynamic �ltering 117

First(�) = fa j 9� : �)�a�g;

Last(�) = fa j 9� : �)��ag;

Follow(X) = fa j 9�; � : #S$)��Xa�g;

Precede(X) = fa j 9�; � : #S$)��aX�g:

The predicates LContext, RContext and Context are de�ned by

LContext(A;�; a) = 9b 2 Precede(A) : a 2 Last(b�);

RContext(A; ; c) = 9b 2 Follow(A) : c 2 First(b);

Context(A;�; ; a; c) = LContext(A;�; a)^RContext(A; ; c): 2

Corollary 6.11

[A!����; i; j] 2 CI i� �)�ai+1 : : :aj and Context(A;�; ; ai; aj+1). 2

The notion Context is not dependent on a particular input string a1 : : :an. We
can now proceed with the de�nition of a parsing schema for the dVH algorithm
that takes context into account. We will actually give two such schemata, being
dynamically �ltered versions of dVH1 and dVH3.

Example 6.12 (dVH4, dynamic �ltering)
For arbitrary G 2 CFG a parsing system PdVH4 is de�ned by

IdVH4 = f[A!����; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f[a; j � 2; j � 1]; [b; j� 1; j]; [c; j; j+ 1]
` [A!��b�; j � 1; j] j Context(A;�; ; a; c)g;

D" = f ` [B!��; j; j]g;

DIncl = f[a; i� 1; i]; [B!���; i; j]; [b; j; j+ 1]
` [A!��B�; i; j] j Context(A;�; ; a; b)g;

DConcat = f[A!���1��2; i; j]; [A!��1��2�; j; k]
` [A!���1�2�; i; k]g;

DdVH4 = DInit
[D"

[DIncl
[DConcat:

Note that DConcat
dVH4 = DConcat

dVH1 . There is no need to demand Context(A;�; ; ai;
ak+1), because this follows from Context(A;�; �2; ai; aj+1) and Context(A; �1; ;
aj; ak+1).

118 6. Filtering

The set of relevant valid items is limited to those relevant valid items of PdVH1
that are member of CI.

V
�n(PdVH4) = V

�n(PdVH1) \ CI

= f[A!����; i; j] 2 I j �)�ai+1 : : :aj
^(� 6= " _ � = ")
^ 9�1; �2 : #S$)��1aiAaj+1�2g:

We have de�ned operators of PdVH4 by adding antecedents to operators of PdVH1.
Hence, if Y `dVH4 x it follows a fortiori that Y `dVH1 x and we conclude

dVH1
df
=) dVH4. 2

We have applied two �lters at the parsing schema dVH1. On the one hand,
statically, we have discarded items that cannot contribute to the recognition of a
valid item. On the other hand, dynamically, we have taken context into account
in the de�nition of the deduction steps. These optimizations are orthogonal, in
the sense that they don't interfere with each other. The �nal version of dVH is
obtained simply by merging the two �lters.

Example 6.13 (dVH5, �nal version)
For an arbitrary context-free grammar the parsing system PdVH5 is de�ned by

I
(1) = f[A!��X�; i; j] j A!�X 2 P ^ 0 � i � jg;

I
(2) = f[A!�X��; i; j] j A!X� 2 P ^ 0 � i � jg;

I
(3) = f[A!��; j; j] j A!" 2 P ^ j � 0g;

IdVH5 = I
(1)
[I

(2)
[I

(3);

DInit = f[a; j � 2; j � 1]; [b; j� 1; j]; [c; j; j+ 1]
` [A!��b�; j � 1; j] j Context(A;�; ; a; c)g;

D" = f ` [B!��; j; j]g;

DIncl = f[a; i� 1; i]; [B!���; i; j]; [b; j; j+ 1]
` [A!��B�; i; j] j Context(A;�; ; a; b)g;

DConcat = f[A!���X; i; j]; [A!��X�; j; k] ` [A!��X�; i; k]g;

DdVH5 = DInit
[D"

[DIncl
[DConcat:

6.4 Step contraction 119

The set of relevant valid items is limited to those relevant valid items in PdVH3

that are member of CI.

V
�n(PdVH5) = f[A!��X��; i; j] 2 I j X�)�ai+1 : : :aj

^(� = " _ � = ")
^ 9�1; �2 : #S$)

��1aiAaj+1�2g:

It is left to the reader to verify

dVH4
sf
=) dVH5,

dVH3
df
=) dVH5. 2

In an algorithm derived from these parsing schemata one can e�ciently imple-
ment the left and right context predicates by storing the allowed preceding/fol-
lowing terminals for every production and dot position in a table. If this imple-
mentation technique is used, it is clear that dVH5 yields the most e�cient parser
of all dVH schemata, because the least number of items is recognized at negligible
extra cost per reduction.

6.4 Step contraction

The �nal and most powerful kind of �ltering is step contraction. As the name
suggests, it is indeed the reverse of the step re�nement relation of Section 5.2.
The general idea is the following. When an algorithm takes small and easy steps,
it can sometimes be speeded up by taking somewhat larger and perhaps more
complicated steps. Such an optimization will typically improve an algorithm with
a (small) constant factor.

It is paradoxical, perhaps, that both step re�nement and step contraction are
useful for improving the practical performance of a parser. The di�erence, with
respect to practical implementations, is that step re�nement is used for qualita-
tive changes whereas step contraction is merely used for increasing the e�ciency
without making changes to the underlying principles of an algorithm. As a typical
example of the former, consider GCYK

sr
=) buE, which decreases the com-

plexity of a parser from O(n%+1) to O(n3), where % is the length of the longest

right-hand side. An example of the latter is Earley
sc
=) GHR, the schema for

the improved Earley parser that was described by Graham, Harrison and Ruzzo
[1980].

A consequence of this paradox is that step re�nement and step contraction per

se are not necessarily useful. Too much re�nement yields unproductive interme-
diate results, while too much contraction may lead to a more complex algorithm.
But the purpose of our formalism of parsing schemata is not primarily that it can
be used to improve parsers; the main objective is to describe at the right level of
abstraction how parsers are related to one another and what precisely is improved
by introducing certain variants.

120 6. Filtering

De�nition 6.14 (step contraction)

Let P1, P2 be semiregular parsing systems. The relation P1
sc
�! P2 holds if

(i) I1 � I2,

(ii) `
�

1 � `
�

2 ,

Let P1 and P2 be semiregular parsing schemata for some class of grammars CG.

The relation P1
sc
=) P2 holds if, for each G 2 CG and for each a1 : : : an 2 ��,

P1(G)(a1 : : : an)
sc
�! P2(G)(a1 : : :an). 2

Corollary 6.15

For any two parsing systems P1, P2 or parsing schemata P1, P2 it holds that
P1

sc
�! P2 if and only if P2

sr
�! P1;

P1
sc
=) P2 if and only if P2

sr
=) P1. 2

Any dynamic �lter, as a consequence, is also a step contraction | although
of a somewhat degenerate form: no real contraction of sequences of deduction
steps takes place. As for proper step contractions, we could in principle make a
di�erence between static step contractions (multiple steps in D1 are contracted
to single steps in D2) and dynamic step contractions (also including addition of
antecedents). This is of little use and only leads to more complicated de�nitions.
All the following examples belong to the static kind.

Example 6.16 (Earley vs. Left-Corner)
In Example 5.22 we have shown that Earley is a step re�nement of LC. It makes
more sense to de�ne it the other way round, because we have constructed the LC
schema (cf. Example 4.36) as a slightly more e�cient variant of Earley.
The same holds for the bottom-up variants of both algorithms. Hence,

Earley
sc
=) LC;

buE
sc
=) buLC.

In fact we have already proven this in Examples 4.36 and 4.35 where the Left-
Corner schemata were introduced by stripping some redundancies from the Earley
schemata. 2

Example 6.17 (dVH3
sc
=) buLC)

See Examples 6.6 and 4.35 for de�nitions of dVH3 and buLC. As usual, we
consider parsing systems PdVH3 and PbuLC for an arbitrary grammarG and string
a1 : : : an.
First, we show that IbuLC � IdVH3. There is a notational di�erence, because
PdVH3 uses double-dotted and PbuLC single-dotted items. But it is clear that

6.4 Step contraction 121

items [A!���; i; j] and [A!����; i; j] are just di�erent denotations for a single
item

[A!h�; ai+1 : : :aji �]:

So we observe that I
(1)

buLC = I
(2)

dVH3 and I
(2)

buLC = I
(3)

dVH3, hence IbuLC � IdVH3.
Next, we have to show that `�buLC � `

�

dVH3. To this end it su�ces to show that
for every deduction step y1 : : : ; yk ` x 2 DbuLC it holds that y1 : : : ; yk `

�

dVH3 x.
We check each type of deduction step in PbuLC:

� D"
buLC � D"

dVH3 by de�nition.

� D
LC(a)
buLC � DInit

dVH3 by de�nition.

� D
LC(A)
buLC � DIncl

dVH3 by de�nition.

� DScan
buLC : An arbitrary deduction step

[A!���a�; i; j]; [a; j; j + 1] ` [A!��a��; i; j + 1]

is emulated in PdVH3 by

[a; j; j + 1] ` [A!��a��; j; j + 1];

[A!���a�; i; j]; [A!��a��; j; j + 1] ` [A!��a��; i; j + 1]:

� D
Compl
buLC : and arbitrary deduction step

[A!���B�; i; j]; [B!��; j; k] ` [A!��B��; i; k]

is emulated in PdVH3 by

[B!��; j; k] ` [A!��B��; j; k];

[A!���a�; i; j]; [A!��B��; j; k] ` [A!��B��; i; k]:

Hence we conclude that DbuLC � `
�

dVH3. 2

Next, we will introduce the improvement of the Earley algorithm by Graham
Harrison and Ruzzo [1980], also known as the GHR algorithm. It has been designed
as a step contraction of the Earley algorithm. A bottom-up variant of GHR also
exists.

Another step contraction on bottom-up GHR, that will be treated subse-
quently, has been de�ned by Chiang and Fu [1984]. This last variant allows paral-
lel implementations where it takes exactly n steps to parse a sentence of length n

(rather than O(n) steps involving a constant that is dependent on the grammar,
as in bottom-up Earley, or maximally 2n steps as in the GHR algorithm).

122 6. Filtering

Example 6.18 (GHR)
The algorithm of Graham, Harrison and Ruzzo makes two improvements upon the
original de�nition of Earley:

� nullable symbols (i.e. symbols that can be rewritten to the empty string) can
be skipped when the dot is worked rightwards through a production;

� chain derivations (i.e. derivations of the form A)+B) are reduced to single
steps.

For an arbitrary grammar G and string a1 : : :an we de�ne a parsing system PGHR

as follows.

IGHR = f[A!���; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f` [S!��; 0; 0] j �)�"g;

DScan = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]
j �)�"g;

DC1 = f[A!��B�; i; j]; [B!��; j; k] ` [A!�B��; i; k]
j i < j < k ^ �)�"g;

DC2 = f[A!��B�; i; i]; [C!��; i; j] ` [A!�B��; i; j]
j i < j ^B)�C ^ �)�"g;

DPred = f[A!��B�; i; j] ` [C!�0��0; j; j] j B)�C ^ �0)�"g;

DGHR = DInit
[DScan

[DC1
[DC2

[DPred:

In order to verify the correctness of GHR | at the same time showing that

Earley
sc
=) GHR| we will split the step contraction into two separate �lters.

As an intermediate schema we de�ne GHR'. For an arbitrary G and a1 : : : an we
de�ne PGHR' by

IGHR' = IGHR;

DC1
GHR' = f[A!��B�; i; j]; [B!��; j; k] ` [A!�B��; i; k] j �)�"g;

DC2
GHR' = f[A!��B�; i; i]; [C!��; i; j] ` [A!�B��; i; j] j

B)�C ^ �)�"g;

DGHR' = DInit
GHR [DScan

GHR [DC1
GHR' [DC2

GHR' [DPred
GHR:

In the �rst step, Earley
sc
=) GHR', only new deduction steps are added. These

extra deduction steps are contractions of steps that existed already. Hence we have
only introduced redundancy and it holds that Earley

re
(= GHR'.

6.4 Step contraction 123

Secondly, from GHR' to GHR we will delete some redundancies, but di�erent
ones from those that have just been introduced. It has to be shown that steps in
DC1 are redundant for i = j or j = k and steps in DC2 are redundant for i = j.
Take, for example, the case that j = k. If one has

[A!��B�; i; j]; [B!���; j; j] ` [A!�B��; i; j] 2 DC1
GHR';

then B is nullable. Hence, for any deduction step with consequent [A!��B�; i; j],
there is a similar deduction step that skips the nullable string B� and produces
[A!�B��; i; j] directly.

The other case are similar. Thus we conclude that GHR'
re
=) GHR and hence

Earley
sr
=) GHR.

The correctness of GHR follows from the observation that

Earley
re
(= GHR'

re
=) GHR

and the fact that V�n is not a�ected by redundancy elimination. 2

Example 6.19 (buGHR)
A bottom-up variant of GHR is straightforward from the de�nitions of buE and
GHR. For an arbitrary grammarG and string a1 : : :an we de�ne a parsing system
PbuGHR as follows.

IbuGHR = f[A!���; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f` [A!���; j; j] j �)�"g;

DScan = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]
j �)�"g;

DC1 = f[A!��B�; i; j]; [B!��; j; k] ` [A!�B��; i; k]
j i < j < k ^ �)�"g;

DC2 = f[A!��B�; i; i]; [C!��; i; j] ` [A!�B��; i; j]
j i < j ^B)�C ^ �)�"g;

DbuGHR = DInit
[DScan

[DC1
[DC2:

The fact that buE
sc
=) buGHR and the correctness of buGHR can be estab-

lished as in Example 6.18 2

Example 6.20 (ChF)
A small improvement upon the bottom-up variant of the algorithm of Graham,
Harrison and Ruzzo has been de�ned by Chiang and Fu [1984]. It is step contrac-
tion in the most literal sense of the word. The deduction steps are somewhat more
complicated, but the basic idea is perfectly clear:

124 6. Filtering

� If an item can be deduced by two complete deduction steps from DC1 and
DC2 in PbuGHR, where the consequent of the former is an antecedent of the
latter, then contract these two steps into a single deduction step;

� Similar for DScan and DC2 in PbuGHR.

The deduction steps in DScan and DC1 remain as they are. The de�nition of
DC2 is adapted and a second set of scan steps is introduced. This results in the
following parsing system.

IChF = f[A!���; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f` [A!���; j; j] j �)�"g;

DS1 = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]
j �)�"g;

DS2 = f[C!�a�0; i; j]; [a; j; j+ 1] ` [A!�B��; i; j + 1]
j B)�C ^ ���0)�"g;

DC1 = f[A!��B�; i; j]; [B!��; j; k] ` [A!�B��; i; k]
j i < j < k ^ �)�"g;

DC2 = f[C!�E�0; i; j]; [E!��; j; k] ` [A!�B��; i; k]
j i < j ^B)�C ^ ���0)�"g;

DChF = DInit
[DS1

[DS2
[DC1

[DC2:

It is left to the reader to verify that buGHR
sc
=) ChF. 2

In ChF, DInit deduces more items than necessary. Only items of the form
[A!��a�; j; j] are used in subsequent steps. There is no longer a need for items
of the form [A!��B�; j; j]; their use has disappeared in the step contraction

PbuGHR
sc
�! PChF. Hence we can apply another redundancy elimination step.

Such minor optimizations have little impact, however, and we will not pursue
them further.

6.5 The family of Earley-like parsing schemata

We have encountered 4 types of �lters, so far: redundancy elimination, static
�ltering, dynamic �ltering and step contraction. From the de�nitions it is obvious

that for any class of parsing schemata

re
=) �

sf
=) �

df
=) �

sc
=) :

We don't need to introduce a general �ltering operation, because every �lter is
a step contraction. In Figure 6.2, an overview is given of most �ltering relations

6.5 The family of Earley-like parsing schemata 125

between parsing schemata discussed in Chapter 6. The arrows are labelled with
the most restricted type of �lter that applies in each case. dVH2 has been left
out because it is only an intermediate step in the static �lter from dVH1 to
dVH3. Each arrow is also labelled with the number of the example in which it is
discussed.

ChF GHR LC

buGHR

�
�
�
�
���

�
�
�
�
���

sc

6.20

A
A
A
A
AAU

A
A
A
A
AAU

df

6.19

Earley

�
�
�
�
���

�
�
�
�
���

sc

6.18

A
A
A
A
AAU

A
A
A
A
AAU

sc

6.16

buLC

�
�
�
�
���

�
�
�
�
���

df

6.9

dVH5

buE

�
�

�
�

�
�

�
��+

�
�

�
�

�
�

�
��+

sc

6.19

�
�
�
�
���

�
�
�
�
���

df

6.8

A
A
A
A
AAU

A
A
A
A
AAU

sc

6.16

dVH3

�
�
�
�
���

�
�
�
�
���

sc

6.17

A
A
A
A
AAU

A
A
A
A
AAU

df

6.13

dVH4

�
�
�
�
���

�
�
�
�
���

sf

6.13

dVH1

�
�
�
�
���

�
�
�
�
���

sf

6.4

6.6

A
A
A
A
AAU

A
A
A
A
AAU

df

6.12

Figure 6.2: Filtering relations between schemata discussed in Chapter 6

Theorem 6.21

A �ltering relation holds between any two parsing schemata displayed in Figure 6.2
if and only if they are connected by a sequence of arrows.

Proof.
For the individual arrows, see the examples referred to. Transitivity (and reex-
ivity, for empty sequences) is obvious from the de�nitions.
As for the nonexistence of �ltering relations, this has to be veri�ed for every
not-connected pair of schemata, but it is always obvious. 2

The �ltering relations in Figure 6.2 constitute a directed acyclic graph with
several sources and several sinks. Is there a more general schema from which both

126 6. Filtering

buE and dVH1 can be derived by applying a �lter? And can the �lters that
produced ChF,GHR, LC and dVH5 be combined, producing a single, optimally
�ltered schema? Such schemata can indeed be derived, but their practical value

is doubtful.
We have seen several examples of composite �lters that are composed of \or-

thogonal" components. We have dealt with dVH1
df
=) dVH5 extensively; buE

sc
=) LC is another case. In Figure 6.3 the taxonomy of Earley-like parsing
schemata is extended with cross-breedings between the sinks of the graph in Fig-
ure 6.2. Not all of these schemata are equally useful, however.

The optimization of Chiang and Fu leads to a maximum parallel speed-up of
50 %, but does not speed up a sequential implementation. Hence a left-to-right
version of ChF on a single processor is not faster than GHR | unless this
is taken a starting point for another static �lter, where intermediate results are
discarded that have become redundant by the Chiang and Fu step contraction.

An LC parser with GHR optimizations, similarly, can be seen as a starting point
for further static �ltering.
A parsing schema for an algorithm that does exist in the literature is obtained by

combining dVH3
sc
=) LC and dVH3

df
=) dVH5: a left-corner parser with

one symbol look-ahead. Our LC schema is the schema for an LC(0) parser. A one-
word look-ahead can be added to LC like to a dVH schema without look-ahead.
On the other hand, the dVH5 parsing schema could be classi�ed as dVH(1,1),
i.e., a schema for the dVH algorithmwith one-word look-back and look-ahead. The
optimization to a buLC(1,1) schema is straightforward. LC(1) is obtained by
adding a top-down �lter as usual. The look-back has become obsolete by the top-
down �lter. One could also see it in a di�erent way: a top-down �lter constitutes
a look-back of unlimited size. A top-down �ltered parser takes everything to the
left of a constituent as context for bottom-up �ltering.

The parsing schemata contained in a box in Figure 6.3 are schemata for parsers
that have been seriously proposed in the literature. The other ones have been
added only to illustrate �ltering and to complete the picture. The algorithm of de
Vreught and Honig [1989] has in fact a schema that is located between dVH4 and
dVH5. The authors have overlooked the possibility of statically �ltering dVH2
into dVH3 and applied the dynamic �lter to dVH2.

A \mother" schema from which both dVH1 and buE can be derived by step
contraction is shown at the top of the graph, To call it dVH0 is actually unfair
to de Vreught and Honig: the schema is rather awkward as is has to combine the
ine�ciencies of dVH and bottom-up Earley.

Example 6.22 (dVH0)
For arbitrary G 2 CFG and a1 : : : an a parsing system PdVH0 is de�ned as follows.

IdVH0 = f[A!����; i; j] j A!�� 2 P ^ 0 � i � jg;

DInit = f` [A!���; j; j]g;

6.5 The family of Earley-like parsing schemata 127

ChF

A
A
A
AAU

A
A
A
AAU

df

GHR

�
�
�
���

�
�
�
���

sc
A
A
A
AAU

A
A
A
AAU

sc

LC(0)

A
A
A
AAU

A
A
A
AAU

sc
�
�
�
���

�
�
�
���

df

buLC(1,1)

�
�
�
���

�
�
�
���

df
AAAA
.
.
.

lr-ChF

A
A
A
AAU

A
A
A
AAU

sc

GHR-LC

�
�
�
���

�
�
�
���

sc
A
A
A
AAU

A
A
A
AAU

df

LC(1)

AAAA�
�
�
���

�
�
�
���

sc

ChF-LC

A
A
A
AAU

A
A
A
AAU

df

GHR-LC(1)

�
�
�
���

�
�
�
���

sc
AAAA
.
.
.

ChF-LC(1)

AAAA

�

�

�

LC(k)

AAUAAU ������

AAAA����

buGHR

�
�
�
���

�
�
�
���

sc
A
A
A
AAU

A
A
A
AAU

df

Earley

�
�
�
���

�
�
�
���

sc
A
A
A
AAU

A
A
A
AAU

sc

buLC

A
A
A
AAU

A
A
A
AAU

�
�
�
���

�
�
�
���

df df

dVH5

�
�
�
���

�
�
�
���

sc
AAAA
.
.
.

buE

�
�

�
�

�
��+

�
�

�
�

�
��+

sc
�
�
�
���

�
�
�
���

df
A
A
A
AAU

A
A
A
AAU

sc

dVH3

�
�
�
���

�
�
�
���

sc
A
A
A
AAU

A
A
A
AAU

dVH

������

dVH4

������ AAAA
.
.
.

dVH2

������ A
A
A
AAU

A
A
A
AAU

dVH1

������ A
A
A
AAU

A
A
A
AAU

df

dVH0

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

sc

A
A
A
AAU

A
A
A
AAU

sc

Figure 6.3: A taxonomy of Earley-like parsing schemata

128 6. Filtering

DScan = f[A!���a; i; i]; [a; i; i+ 1] ` [A!��a�; i; i+ 1]g;

DCompl = f[A!���B; i; i]; [B!���; i; j] ` [A!��B�; i; j]g;

DConcat = f[A!���1��2; i; j]; [A!��1��2�; j; k] ` [A!���1�2�; i; k]g;

DdVH0 = DInit
[DScan

[DCompl
[DConcat:

It is left to the reader to verify that

dVH0
sc
=) dVH1,

dVH0
sc
=) buE. 2

Figure 6.3 is far from complete; a variety of related schemata could be added. In
Section 4.6 we have remarked that the Earley schema is also the parsing schema of
a (generalized) LR(0) parser. One can de�ne �ltered versions that specify LR(k),
SLR(k) and LALR(k) parsers. But we have seen enough examples here. Parsing
schemata for LR-parsers will be discussed in Chapter 12. In chapter 10 we have a
closer look at LC parsers.

6.6 A summary of relations between

parsing schemata

All relations on parsing systems that have been introduced in Chapters 5 and 6
are summarized in Figure 6.4. The same relations apply to deduction systems in

general (in which case the item set I should be replaced by a general domain X,
to be consistent with the notation used in Chapter 4). Relations that have been
de�ned between parsing schemata are summarized in Figure 6.5.

A more re�ned taxonomy of relations is possible. One could de�ne static step

contraction, which is a superclass of static �ltering and a subclass of step con-
traction. Step contraction, then, is a combination of static step contraction and
dynamic �ltering. Static step contractions can be described by a speci�c kind
of redundancy introduction followed by redundancy elimination. This has been
illustrated in fact in Example 6.18, where we discussed the static step contraction
Earley

sc
=) GHR.

6.7 Conclusion

In this chapter we have been concerned with optimization of parsing schemata.
We have de�ned a series of �ltering operations that can be used to strip spurious
items and deduction steps from parsing systems. A variety of parsing schemata,

6.7 Conclusion 129

redundancy
elimination

re
�!

I1 � I2

D1 � D2

V1 = V2

static
�ltering

sf
�!

I1 � I2

D1 � D2

dynamic
�ltering

df
�!

I1 � I2

`1�`2

step
contraction

sc
�!

I1 � I2

`
�

1�`
�

2

step
re�nement

sr
�!

I1 � I2

`
�

1�`
�

2

item
re�nement

ir
�!

f regular
I1 = f(I2)
�1 = f(�2)

item
contraction

ic
�!

f regular
f(I1) = I2

f(�1) = �2

re�nement
ref
�!

P1
ir
�!

sr
�! P2

� � �

6

?

inverse

-�
inverse

| {z }

Figure 6.4: A summary of relations between parsing systems

130 6. Filtering

redundancy
elimination

re
=)

P1(G)
re
�!

P2(G)

static
�ltering

sf
=)

P1(G)
sf
�!

P2(G)

dynamic
�ltering

df
=)

P1(G)
df
�!

P2(G)

step
contraction

sc
=)

P1(G)
sc
�!

P2(G)

step
re�nement

sr
=)

P1(G)
sr
�!

P2(G)

item
re�nement

ir
=)

P1(G)
ir
�!

P2(G)

item
contraction

ic
=)

P1(G)
ic
�!

P2(G)

re�nement
ref
=)

P1
ir
=)

sr
=) P2

extension
ext
=)

P1(G) = P2(G)

dom(P1) � dom(P2)

generalization
gen

=)

P1
ref
=)

ext
=) P2

� � �

6

?

inverse

-�
inverse

| {z }

| {z }

Figure 6.5: A summary of relations between parsing schemata

6.7 Conclusion 131

describing parsing algorithms known from the computer science literature, have
been captured in a single taxonomy of Earley-related parsers.

It is surprising, perhaps, that we can make a clear distinction between static
�ltering and dynamic �ltering. The former is usually understood as \compile-time"
optimization, the latter as \run-time" optimization. The distinction can be made
at the abstract level of parsing schemata, because static �lters are independent
of the string (represented by the hypotheses) and dynamic �lters may depend on
the string. Static �ltering means discarding irrelevant parts of a system; dynamic
�ltering can take context into account by adding antecedents to deduction steps.

The strongest form of �ltering, step contraction, is the reverse of step re�ne-
ment that was introduced in Chapter 5. Both operations are used to increase the
e�ciency of parsers: step contraction is used to diminish the work to be done,
whereas step re�nement is useful in transformations that provide a qualitative im-
provement in the parser. It will be clear that step re�nement or step contraction
per se is not a useful operation. Over-re�nement will lead to too much work; over-

contraction will lead to steps that require additional sophistication in a parser that
implements such a schema.

The calculus of parsing schemata that has been developed in Chapters 5{6
is not a tool that guides a parser designer towards a schema for an optimally
e�cient parser. The question whether the individual deduction steps (including
search techniques to retrieve the relevant antecedents) can be implemented e�-
ciently is not discussed at this level of abstraction. Parsing schemata are a useful
tool, however, to describe the relations between various parsing algorithms and to
explain precisely the nature of certain optimizations.

We have now �nished the formal theory of parsing schemata for context-free
grammars. In part III we will use parsing schemata as a tool for various applica-
tions (hence part III can be seen as consisting of several, unrelated subparts). As
a �rst undertaking, in Chapters 7{9, we will discuss how feature structures can
be incorporated into parsing schemata, yielding a practical parsing schema nota-
tion for uni�cation grammars. In the remainder of Part II we will extend parsing
schemata to uni�cation grammars. Various applications of parsing schemata are
discussed in Part III.

132 6. Filtering

Part III

APPLICATION

133

Chapter 7

An introduction to

uni�cation grammars

In part II we have developed a formal theory of parsing schemata for context-free

grammars. In part III we will apply this theory in several di�erent directions.

In Chapters 7{9, we discuss parsing schemata for uni�cation grammars.

In Chapters 10 and 11 we use parsing schemata to de�ne Left-Corner and Head-

Corner chart parsers. We will prove these to be correct as well.

In Chapters 12 and 13, subsequently, we derive a parsing schema for Tomita's

algorithm as an example of an algorithm that is not item-based. As a result,

we can cross-fertilize the Tomita parser with a parallel bottom-up Earley parser,

yielding a parallel bottom-up Tomita parser.

In Chapter 14, �nally, we discuss hard-wired implementations of parsing schemata,

in the form of boolean circuits.

We will extend parsing schemata with feature structures, so that schemata for

parsing uni�cation grammars can be de�ned. In addition to items that describe

how a parser deals with the context-free backbone of a grammar, we will extend

the schema with a notation in which one can specify how features are transferred

from one item to the other. Thus a formalism is obtained in which feature per-

colation in uni�cation grammar parsing can be controlled explicitly. Chapter 7 is

a brief, informal introduction. In Chapter 8 we give a lengthy, formal treatment

of the formalism; some more practical aspects of uni�cation grammar parsing are

discussed in chapter 9.

Uni�cation grammars | also called uni�cation-based grammars, constraint-

based grammars, or feature structure grammars | are of central importance to

135

136 7. An introduction to uni�cation grammars

current computational linguistics. As these formalisms are not widely known

among computer scientists, it seems appropriate to give an introduction that

should provide some intuition about what we are going to formalize.

In 7.1 a preview is given of what parsing schemata with feature structures

look like. While keeping the notion of feature structures deliberately abstract

and vague, the general idea of such a parsing schema stands out rather clear.

In 7.2, subsequently, feature structures and uni�cation grammars are informally

introduced by means of an example. We use the PATR formalismof Shieber [1986],

with a tiny change in the notation. Anyone who is familiar with PATR can skip

7.2.

7.1 Uni�cation-based parsing schemata:

a preview

A thorough, formal treatment of uni�cation grammars and parsing schemata for

these grammars will be given in Chapter 8. As we will see, it requires quite some

space and e�ort to do things properly. Parsing algorithms for uni�cation grammars

constitute a complex problem domain. A wealth of concepts is to be introduced,

properly de�ned and | not the least problem | provided with clear and precise

notations. We will jump ahead now and look at a glimpse of what we are heading

for. An intuitive understanding of what we are trying to formalize may help the

reader to get through the formal parts.

We address the following question: \How can parsing schemata be enhanced

with any kind of information that is added to the context-free backbone of a gram-

mar?" One may think of attribute grammars, uni�cation grammars, a�x gram-

mars or any other formalism in which such information can be speci�ed. We will

be unspeci�c, for good reason. By refusing (for the moment) to use a particular

formalism we cannot get sidetracked by all its sophisticated details.

In this section we recapitulate a simple context-free parsing schema, give an

example of the use of other grammatical information, introduce (fragments of) a

notation for it, and add this to the parsing schema.

As an example of a context-free parsing schema we recall the Earley schema

of Example 4.32. For an arbitrary grammar G 2 CFG we de�ne a parsing system

PEarley = hI;H;Di, where I denotes the domain of Earley items; H (the hypothe-

ses) encodes the string to be parsed; D comprises the deduction steps that can

be used to recognize items. Most deduction steps are of the form �; � ` �. When

the antecedents � and � have been recognized, then the consequent � can also be

recognized. Some deduction steps have only a single antecedent. Moreover, in

order to start parsing, an initial deduction step with no antecedents is included.

PEarley is de�ned by

IEarley = f[A!���; i; j] j A!�� 2 P; 0 � i � jg;

7.1 Uni�cation-based parsing schemata: a preview 137

H = f[a1; 0; 1]; : : :; [an; n� 1; n]g;

DInit = f ` [S!�; 0; 0]g;

DScan = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DPred = f[A!��B�; i; j] ` [B!�; j; j]g;

DEarley = DInit [DScan [DCompl [DPred;

where H varies according to the string a1 : : :an that should be parsed. The second

part of the usual set notation f: : : j : : :g has been deleted in most cases; by

de�nition, deduction steps may only use items from I and H.

We assume that the context-free backbone of a grammar is enhanced with

additional syntactic, semantic or other linguistic information. Constituents, pro-

ductions, and items can have certain features
1 that express information not present

in the context-free part of the grammar. This information can be of di�erent kinds.

A typical use of features is the transfer of information through a parse tree. As

an example, consider

In the production S!NP VP, the semantics of S can be derived from

the semantics of NP and VP by : : :

If each word in the lexicon has some semantics associated with it, and for each

production it is known how the semantics of the left-hand side is to be derived from

the right-hand side, the semantics of the sentence can be obtained compositionally

from its constituents.

Another typical, more syntactic way in which features are used is to constrain

the set of sentences that is acceptable to the parser. A canonical example is

In the production S!NP VP, there must be (some form of) agreement

between NP and VP.

The precise nature of the agreement is irrelevant here. Either constituent will have

some features that could play a role in agreement, e.g.

the noun phrase \the boy" is masculine, third person singular,

but the fact that agreement is required between NP and VP is a feature of the

production, not a feature of each of the constituents individually.

Let us now enhance the Earley parser with such features. If we parse a sentence

\The boy : : :", at some point we will recognize an item [S!NP�VP ; 0; 2]. We could

attach the previously stated information to the item, as follows

1At this level of abstraction, the word \feature" can be replaced by \attribute", \a�x", etc.

All of these stand for roughly the same concept, but refer to di�erent kinds of formalisms.

138 7. An introduction to uni�cation grammars

The NP in [S!NP �VP ; 0; 2] is masculine, third person singular.

Hence the VP that is to follow must be masculine, third person singular.

Next we apply the predict step

[S!NP �VP ; 0; 2] ` [VP!�*v NP ; 2; 2];

in combination with a feature of the production VP!*v NP :

In the production VP!*v NP, the agreement of VP is fully determined

by the agreement of *v .

Combining all this information, we obtain the following item annotated with fea-

tures:

[V P!�*v NP ; 2; 2]

VP must be masculine, third person singular;

hence *v must be masculine, third person singular.

Gender plays no role in verb forms in English. Demanding that the verb form be

masculine is irrelevant, but harmless. If the grammar doesn't specify gender for

verb forms, it follows that every form of every verb can be used in combination

with a masculine subject.

An important concept that must be introduced here is consistency . The fea-

tures of an object are called inconsistent if they contain conicting information.

As an example, consider the sentence \The boy scout : : :", where \scout" is known

to be both a noun and a verb form. If we continue from the previous item and

scan a *v , we would obtain

[V P!*v �NP ; 2; 3]

VP must be masculine, third person singular;

hence *v must be masculine, third person singular.

*v is either plural or �rst or second person singular.

This is inconsistent and therefore not acceptable as a valid item.

We need to introduce a tiny bit of notation in order to enhance the Earley

parsing schema with features. The notation will be explained, but not de�ned in

a mathematical sense. We write

� '0(A!�) for the features of a production A!�;

� '(X) for the features of a constituent X;

� '([A!���; i; j]) for the features of an item [A!���; i; j].

7.1 Uni�cation-based parsing schemata: a preview 139

The index 0 for features of productions is to indicate that these are taken straight

from the grammar. In both other cases, features may have accumulated by trans-

fer from previously recognized constituents and/or items.

The features of an item comprise the features of the production and those of its

constituents (as far as these are known yet). From an item, the features of each

constituent mentioned in that item can be retrieved.

We will not (yet) de�ne a domain of expressions in which features can be for-

mulated. This is left to the imagination of the reader. We need some notation,

however, to relate sets of features to one another. Combining the features of ob-

jects � and � is denoted by '(�)t'(�). The square union (t) may be interpreted

as conventional set union ([) if it is understood that we accumulate sets of fea-

tures. Similarly, we write '(�) v '(�) (which may be interpreted as '(�) � '(�))

to denote that an object � has at least all features of an object � but may have

other features as well.

We will now extend the Earley parsing schema with the possibility to include

features of constituents, productions and items. The parsing schema is de�ned

by a parsing system PEarley = hIEarley;H;DEarleyi for an arbitrary context-free

grammarG, where the set H is determined by the string to be parsed. The domain

is de�ned by

IEarley = f[A!���; i; j]� j A!�� 2 P ^ 0 � i � j ^

'0(A!��) v '(�) ^ consistent ('(�))g;

The � symbol is used only for easy reference. Subscripting [A!���; i; j] with �

means that we may refer to the item as � in the remainder of the formula. The

unabbreviated, somewhat more cumbersome notation for the same de�nition is

IEarley = f[A!���; i; j] j A!�� 2 P ^ 0 � i � j ^

'0(A!��) v '([A!���; i; j]) ^

consistent ('([A!���; i; j])) g:

In words: it is mandatory that all features of a production be contained in an item

that is based on that production. The item may have other features as well, as

long as this does not lead to an inconsistency.

The deduction steps are the usual context-free deduction steps, annotated with

how the features of the consequent are determined by the features of the an-

tecedents:

DInit = f ` [S!�; 0; 0]� j '(�) = '0(S!)g;

DScan = f[A!��a�; i; j]�; [a; j; j + 1]� ` [A!�a��; i; j + 1]�
j '(�) = '(�) t '(a�)g;

DCompl = f[A!��B�; i; j]�; [B!�; j; k]� ` [A!�B��; i; k]�
j '(�) = '(�) t '(B�)g;

140 7. An introduction to uni�cation grammars

DPred = f[A!��B�; i; j]� ` [B!�; j; j]�
j '(�) = '(B�) t '0(B!)g;

DEarley = DInit [DScan [DCompl [DPred:

The items have been subscripted with identi�ers �; �; � for easy reference. The

notation '(X�) is used for those features of the item � that relate to constituent

X.

7.2 The example grammar UG1

We will look at a very simple example of a uni�cation grammar. Our example

grammar does not pretend to have any linguistic relevance. Moreover, the example

deviates slightly from the usual examples as given by, e.g., Shieber [1986]. It is not

our purpose to advocate the felicity of uni�cation grammars to encode linguistic

phenomena, but to show how context-free backbones of natural language grammars

can be enhanced with features. Hence, we take the context-free example grammar

that has been used in chapter 2 and simply add features to that grammar.

The Earley schema of the previous section is too advanced, for the time being,

and we will parse strictly bottom-up in CYK fashion. If constituents B and C

are known for a production A!BC, then A can be recognized and an appropriate

feature structure for it will be constructed.

Di�erent features of a constituent can be stored in a feature structure. For

each word in the language, the lexicon contains a feature structure2 . The lexicon

entry for the word \catches", for example, might look as follows

catches 7�!

2
6666666666664

cat : *v

head :

2
64
tense : present

agr :
1

�
number : singular

person : third

�
3
75

subject :

"
head :

�
agr :

1

�#

object :
� �

3
7777777777775

2If several di�erent feature structures coexist for the same word, we will simply treat these
as belonging to separate (homonym) words. Disjunction within feature structures is discussed in
Section 9.4. While (a limited form of) disjunction is very useful for practical purposes, one can

always interpret feature structures with disjunction as a compact representation of a set of non-
disjunctive feature structures. Hence, from a theoretical point of view, disallowing disjunction is

no limitation to the power of the formalism.

7.2 The example grammar UG1 141

features are listed in an attribute-value matrix (avm). Every word has a feature

cat describing the syntactic category. \Catches" has a feature head that contains

some relevant information about the verb form. Furthermore, there are features

subject and object , describing properties of the subject and direct object of the

verb. The value of a feature can be some atomic symbol (as for cat); an avm

(as for head and subject), or unspeci�ed (as for object). Unspeci�ed features are

denoted by an empty avm, also called a variable. The intended meaning, in this

case, is that the verb catches does have a direct object, but its features do not

matter.

An important notion in avms is coreference (indicated by numbers contained

in boxes). In the above example, the head agr feature is coreferenced with subject

head agr , meaning that the agreement features of \catches" must be shared with

the agreement features of its subject. Note, furthermore, that an entry within a

nested structure of avms can be addressed by means of a feature path.

A �rst, very simple lexicon for the remainder of our canonical example sentence

\the cat catches a mouse" is as follows:

the, a 7�!
�
cat : *det

�

cat, mouse 7�!

2
664
cat : *n

head :

"
agr :

�
number : singular

person : third

�#
3
775

In order to parse the sentence, we need productions that tell us what to do

with the features when we construct constituents. The syntactic categories of

constituents are expressed by means of features, just like all other characteristic

information. A formal, but somewhat austere way to express the construction of

an NP from *det and *n is the following:

X0!X1X2

hX0 cati
:
= NP

hX1 cati
:
= *det

hX2 cati
:
= *n

hX0 head i
:
= hX2 head i:

(7.1)

That is, if we have constituents X1,X2 with cat features *det and *n , respectively,

we may create a new constituent with cat feature NP . Moreover, the head of X0

is shared with the head of X2.
3

3In Chapter 8 we will make a distinction between type identity (denoted=) and token identity

(denoted
:

=). As the distinction is not very relevant here, its introduction is postponed until

Section 8.2, where we have developed the convenient terminology.

142 7. An introduction to uni�cation grammars

In most, if not all grammars it will be the case that all constituents have a cat

feature. Hence we can simplify the notation of production (7.1) to

NP!*det *n

hNP head i
:
= h*n head i:

(7.2)

The meaning of (7.1) and (7.2) is identical; the expression hXi cati
:
= A can be

deleted when we substitute an A forXi in the production. Thus we obtain context-

free productions as usual, enhanced with so-called constraints that describe how

the feature structures of the di�erent constituents are related to one another.

Hence, for the noun phrase \the cat" we may construct a feature structure with

category NP and the head feature taken from the noun \cat:"

the cat 7�!

2
664
cat : NP

head :

"
agr :

�
number : singular

person : third

�#
3
775 ;

similarly for \a mouse." For the construction of a VP , in the same vein, we employ

the following production annotated with constraints:

VP!*v NP

hVP head i
:
= h*v head i

hVP subjecti
:
= h*v subjecti

h*v objecti
:
= hNPi

The verb phrase \catches a mouse" shares its head and subject features with the

verb, while the entire (feature structure of the) NP is taken to be the direct object:

catches a mouse 7�!

2
6666666666666666664

cat : VP

head :

2
64
tense : present

agr :
1

�
number : singular

person : third

�
3
75

subject :

"
head :

�
agr :

1

�#

object :

2
664
cat : NP

head :

"
agr :

�
number : singular

person : third

�#
3
775

3
7777777777777777775

A sentence, �nally, can be constructed from an NP and VP as follows:

S!NP VP

hS headi
:
= hVP head i

hVP subjecti
:
= hNP i

7.2 The example grammar UG1 143

The sentence shares its head with the VP . The subject feature of the VP is shared

with all features of the NP . Note that (by coreference) the subject of the verb

phrase has (head) agreement third person singular. An NP can be substituted for

the subject only if it has the same agreement. If the NP were to have a feature

hhead agr numberi with value plural , then the S would obtain both singular and

plural as values for its hhead agr numberi feature (because it is shared with the

hsubject head agr numberi feature of the VP , which is shared with the hhead

agr numberi feature of the VP). Such a clash of values would constitute an

inconsistency, as discussed in Section 7.1. As a feature structure for S we obtain

the cat catches a mouse 7�!

2
66664
cat : S

head :

2
64
tense : present

agr :

�
number : singular

person : third

�
3
75

3
77775

The entire sentence appears to have less features than its constituing parts NP

and VP . That is because some features were present only to guarantee agreement

between subject and verb. As the sentence has been produced, the agreement

must have been okay, hence there is no need to retain this information explicitly

in the feature structure for an S.

Above we have shown how syntactic constraints can be incorporated into the

features of a grammar. We will also give an example of how semantic information

can be collected from the lexicon and transferred upwards to contribute to the

semantics of the sentence. We will use a very simple uni�cation grammar UG1. A

relevant part of the lexicon for UG1 is shown in Figure 7.1, the productions anno-

tated with constraints are shown in Figure 7.2 The head of each feature structure

is extended with a feature trans(lation), which is only a �rst, easy step towards

translation of the constituent to its corresponding semantics. The translation of a

verb is a predicate with the (translation of the) subject as �rst argument and the

(translation of the) object as second argument.

The production NP!*det *n has been extended with another clause, stating

that the head trans features of *det and *n are to be shared. Thus we obtain, for

example

a mouse 7�!

2
6666664

cat : NP

head :

2
6664
agr :

�
number : singular

person : third

�

trans :

�
pred : mouse

det : �

�
3
7775

3
7777775
:

Because the translation of the subject and object are used as arguments for the

translation of the verb, the relevant properties of subject and object are moved

144 7. An introduction to uni�cation grammars

the 7�!

2
4 cat : *det

head :
h
trans :

�
det : +

�i
3
5

a 7�!

2
4 cat : *det

head :
h
trans :

�
det : �

�i
3
5

cat 7�!

2
66664
cat : *n

head :

2
64 agr :

�
number : singular

person : third

�

trans :
�
pred : cat

�
3
75

3
77775

mouse 7�!

2
66664
cat : *n

head :

2
64 agr :

�
number : singular

person : third

�

trans :
�
pred : mouse

�
3
75

3
77775

catches 7�!

2
66666666666666666666666666666664

cat : *v

head :

2
6666666666664

tense : present

agr :
1

�
number : singular

person : third

�

trans :

2
66664
pred : catch

arg1:
2 � �

arg2:
3 � �

3
77775

3
7777777777775

subject :

2
6664 head :

2
664 agr :

1

trans :
2

3
775
3
7775

object :

"
head :

�
trans :

3

�#

3
77777777777777777777777777777775

Figure 7.1: Part of the lexicon for UG1

7.2 The example grammar UG1 145

S!NP VP

hS head i
:
= hVP head i

hVP subjecti
:
= hNP i

VP!*v NP

hVP head i
:
= h*v head i

hVP subjecti
:
= h*v subjecti

h*v objecti
:
= hNPi

NP!*det *n

hNP head i
:
= h*n head i

h*n head transi
:
= h*det head transi

Figure 7.2: Some productions of UG1

upward to a feature structure for the entire sentence. The reader may verify that,

following the same steps as before, we obtain

the cat catches a mouse 7�!

2
66666666666666664

cat : S

head :

2
66666666666664

tense : present

agr :

�
number : singular

person : third

�

trans :

2
666664

pred : catch

arg1:

�
pred : cat

det : +

�

arg2:

�
pred : mouse

det : �

�

3
777775

3
77777777777775

3
77777777777777775

:

Other features can be added likewise. We can add a modi�er feature to the

translation, in which modi�ers like adjectives, adverbs and prepositional phrases

can be stored. For a noun phrase \the very big, blue cat" we could envisage a

feature structure as in Figure 7.3.

A noun phrase can include any number of modi�ers, hence these are stored by

means of a list . More sophisticated feature structure formalisms as, e.g., HPSG

[Pollard and Sag, 1988], have special constructs for lists. Such constructs are

convenient for notation, but not necessary. As shown in Figure 7.3, lists can

be expressed in the basic formalism as well. In Section 9.5 a more complicated

example is shown where lists are used for subcategorization of verbs.

146 7. An introduction to uni�cation grammars

2
666666666666666666666666664

cat : NP

head :

2
666666666666666666666664

agr :

�
number : singular

person : third

�

trans :

2
666666666666666664

pred : cat

det : +

mod :

2
6666666666664

�rst :

2
66664
trans : big

mod :

2
64�rst :

�
trans : very

mod : no

�
rest : no

3
75

3
77775

rest :

2
64�rst :

�
trans : blue

mod : no

�
rest : no

3
75

3
7777777777775

3
777777777777777775

3
777777777777777777777775

3
777777777777777777777777775

Figure 7.3: feature structure of \the very big, blue cat"

Chapter 8

Parsing schemata for

uni�cation grammars

The last decade has witnessed an overwhelming amount of di�erent, but related

uni�cation grammar formalisms. Our informal introduction in Chapter 7 was

based on PATR [Shieber, 1986], which is the smallest and simplest of these for-

malisms. Unlike formalisms as LFG [Kaplan and Bresnan, 1982], GPSG [Gazdar

et al., 1985] or HPSG [Pollard and Sag, 1987], PATR was not primarily designed to

capture some universal linguistic structure, but merely as a small, clean formalism

that covers the essential properties found in most other uni�cation grammars.

The logical foundations of constraint-based formalisms have been discussed by

Kaspar and Rounds [1986], Smolka [1989, 1992] and Johnson [1991], who give

various axiomatizations of feature structures in predicate logic. In such a log-

ical approach, one describes a constraint language in which constraints can be

expressed. Such constraints are formulae in �rst-order logic with equality. Con-

straints state that certain features must have certain values or be equal to certain

other features. The semantic interpretation of such a formula (following Smolka)

is a feature graph. The most interesting property is satis�ability . For a given

formula it has to be decided whether a feature graph exists that is a model of the

constraint.

A more fundamental treatment is given by Shieber [1992], who starts with the

logical requirements for uni�cation-based grammars and then sets out to investi-

gate which models would be appropriate.

Our purpose, in this chapter and the next, is a rather di�erent one. We will

investigate how, for a given class of uni�cation grammars, e�cient parsers can be

developed, by means of parsing schemata. Just like in the context-free case, we

147

148 8. Parsing schemata for uni�cation grammars

will be concerned with the question which items one likes to derive and which rules

should be used for that. In addition, we extend the formalismwith a notation that

allows explicit speci�cation of transfer of features between items.

Parsing of uni�cation grammars is a combination of two problem areas, both

of which are complex in itself. Parsing is our primary interest, and the linguistic

and logical properties of uni�cation grammars secondary. Hence we do not worry

about how to specify suitable uni�cation grammars for natural languages, nor

are we particularly concerned with the logical properties of various uni�cation

grammar formalisms, but we assume a simple kind of uni�cation grammar and

address the question how e�cient parsers can be de�ned.

In order to be precise we will give a detailed, formal account of our simple for-

malism, that establishes thoroughly what we have presented informally in Chapter

7. The results are virtually equal to those of Smolka and others, but we employ a

rather more computational view and do not pretend to give a general treatise on

uni�cation grammars.

We do not make a distinction between syntax (constraints) and semantics (fea-

ture graphs); we see both domains as syntactic domains. The notion of satis�abil-

ity is replaced by consistency . There is a simple isomorphism between consistent

constraints1 and well-formed feature graphs. Thus we obtain an abstract notion of

a feature structure that may materialize in two di�erent avatars: either as a graph

or as a constraint. We switch representation opportunistically to the domain that

is most convenient at any given moment. For the purpose of (statically) describing

a grammar, the constraint representation is the most useful. But the dynamics

of a grammar, describing how a parse is to be obtained by uni�cation of feature

structures, are easiest understood in the feature graph domain.

Feature structures, both as graphs and constraint sets, are introduced in 8.1.

For both representations we de�ne a lattice and prove these to be isomorphic in 8.2.

For a proper formalization of how features of di�erent objects may relate to one

another, we introduce composite feature structures in 8.3 and de�ne lattices in 8.4.

This formalism is used to de�ne uni�cation grammars in 8.5. Tree composition

in Primordial Soup fashion is discussed in 8.6 and parsing schemata, �nally, are

de�ned in 8.7.

In 8.8, at last, we give another example. The canonical example sentence is

parsed with grammar UG1 (cf. Section 7.2) using an Earley-type parsing schema

(cf. Section 7.1). An overview of other grammar formalisms is presented in 8.9,

related approaches are briey discussed in 8.10, and conclusions are summarized

in 8.11.

1From Section 8.1 onwards, we will call these constraint sets. A constraint as a formula in

�rst order logic with equality can be seen as a conjunction of a series of atomic constraints. For
our purposes it will be more convenient to describe this as a set of atomic constraints, rather

than a conjunction.

8.1 Feature structures 149

8.1 Feature structures

We will give two di�erent formalizations of feature structures, as constraint sets

and feature graphs, and prove these to be isomorphic. The attribute-value matrix

(avm) notation will be used as a convenient, informal notation to denote feature

structures. The correspondence between avms, feature graphs and constraint sets

is straightforward. In Figure 8.1 an avm is shown with corresponding constraint

set and feature graph.

In Figure 8.1(a){(c) it is exempli�ed how the information contained in an avm

can be encoded in a graph. The features are represented by edges; the atomic

values are represented by labels of terminal vertices. Internal vertices carry no

label; their value is the feature structure represented by the outgoing edges. The

root vertex can be labelled with an identi�er for the object whose features are

represented here.

In order to give a formal de�nition of the domain of feature graphs, we �rst

introduce some auxiliary domains from which features and values can be drawn.

De�nition 8.1 (features, constants)

Fea denotes a �nite set of features. We write f; g; h; : : : for elements of Fea.

Const denotes a �nite set of constants. We write c; d; e; : : : for elements of Const.

It is assumed that Fea and Const are disjunct sets. Furthermore, we assume that

a linear order has been de�ned on both sets Fea and Const.

In the sequel we will also need sequences of features. We write �; % for elements

of Fea�. A linear order on Fea� is de�ned by the \lexicographic order" based on

the linear order of Fea:

(i) � < �% for non-empty feature sequences %;

(ii) �f% < �g%0 if f < g.

This linear order on feature sequences will be used to de�ne a suitable normal

form for constraint sets. 2

We recall some useful notions from graph theory and introduce appropriate

notations.

De�nition 8.2 (dags)

A directed graph is a pair � = (U;E), with U a set of vertices2 and E a set of

edges. An edge is a directed pair (u; v) with u; v 2 U . Usually we write u!v for

(u; v) 2 E.

A (possibly empty) sequence of edges u0!u1; u1!u2; : : : ; uk�1!uk is called a

path. We write u �! v for a path from u to v.

2We write U rather than V for the set of vertices, because V denotes the grammar variables

N [�.

150 8. Parsing schemata for uni�cation grammars

X 7�!

2
6666666666664

cat : *v

head :

2
64
tense : present

agr :
1 �

number : singular

person : third

�
3
75

subject :

"
head :

�
agr :

1

�#

object :
� �

3
7777777777775

(a) an attribute value matrix

f hX cati
:
= *v ;

hX head tensei
:
= present ;

hX head agr number i
:
= singular ;

hX head agr personi
:
= third;

hX subject head agr i
:
= hX head agr i;

hX objecti
:
= [] g

(b) a constraint set

X

��
�

�
�

�
�

��+

cat

�

�

�

�
��head

A

A

A

A
AUsubject

Q
Q
Q
Q
Q
Q
QQs

object

�

*v

�
�

�

�

�
��

tense

A

A

A

A

A

A

A
AU

agr

�

?

head

�

�
�

�

�
�

agr
�

present

�
�

�

�

�
��

number

A

A

A

A
AU

person

�
singular

�

third

(c) a feature graph

Figure 8.1: Three di�erent representations of the same feature structure

8.1 Feature structures 151

A directed graph is called cyclic if there is a non-empty path u �! u for some

vertex u 2 U . A graph acyclic if it is not cyclic. We write dag as abbreviation

for a directed acyclic graph.

A root of a graph is a vertex u such that for all v 2 U there is a path from u to v.

A dag is called rooted if it has exactly one root.

An edge u!v is an outgoing edge of u and and incoming edge of v.

A leaf is a vertex with no outgoing edges. 2

De�nition 8.3 (feature graphs)

FG is the class of �nite, rooted dags with the following properties:

(i) every edge is labelled with a feature;

(ii) if f and g are labels of edges originating from the same vertex, then f 6= g;

(iii) leaves may be (but need not be) labelled with a constant;

non-leaf vertices do not carry a label.

We write u
f
! v if u!v is labelled f ; we write u

�
�! v if the sequence of steps

from u to v is labelled with a sequence of features �. We write label(u) = c if u is

labelled with constant c and label(u) = " if u carries no label.

We write �(X) for a feature graph that denotes the features of some (here unspec-

i�ed) object X. 2

An example of a constraint set was shown in Figure 8.1(b). In the de�nition

of a constraint set, we have included a parameter X that can be used to identify

an object for which constraints are to be speci�ed. We will not use this parameter

for a while, but include it here in anticipation of composite constraint sets that

will be de�ned in Section 8.3.

De�nition 8.4 (constraint set)

Let X be a (not further speci�ed) object. Constraints on X can be drawn from

di�erent domains:

� The domain of value constraints VC is de�ned by

VC = fhX�i
:
= c j � 2 Fea� ^ c 2 Constg;

� The domain of existential constraints EC is de�ned by

EC = fhX�i
:
= [] j � 2 Fea�g

where [] is a symbol that does not occur in Fea and Const;

152 8. Parsing schemata for uni�cation grammars

� The domain of coreference constraints CC is de�ned by

CC = fhX�i
:
= hX%i j �; % 2 Fea�g:

A constraint set �(X) is a �nite subset of VC � EC � CC .

As an ad-hoc general notation we write hX�i
:
= � for a constraint, where � can

be of the form c, [], or hX%i. 2

De�nition 8.5 (closure of a constraint set)

Let �(X) � VC � EC � CC be a constraint set. The closure of �(X), denoted

closure(�(X)), is the smallest set satisfying

(i) if hX�i
:
= � 2 �(X) then hX�i

:
= � 2 closure(�(X));

(ii) if hX�i
:
= hX�0i 2 closure(�(X)) and hX�%i

:
= � 2 closure(�(X))

then hX�0%i
:
= � 2 closure(�(X));

(iii) if hX�i
:
= hX%i 2 closure(�(X)) then hX%i

:
= hX�i 2 closure(�(X));

(iv) if hX�%i
:
= � 2 closure(�(X)) then hX�i

:
= [] 2 closure(�(X)).

A constraint set �(X) is called closed if closure(�(X)) = �(X). 2

Note that closure(�(X)) need not be a constraint set according to De�nition 8.4:

it could be an in�nite set. If, for example, hX�i
:
= hX�%i 2 �(X) then, by (ii)

we obtain hX�%i
:
= hX�%%i 2 �(X), hX�%%i

:
= hX�%%%i 2 �(X), and so forth.

The purpose of the existential constraints added in (iv) is to identify the exis-

tence of all substructures. We will use them for the transformation of a constraint

set into a graph.

The closure of the constraint set in Figure 8.1(b) is shown in Figure 8.2. The

concept of a closed constraint set is useful because it de�nes a notion of equiva-

lence that corresponds to our intuitive notion of when two constraint sets specify

\the same information". We call �1(X) and �2(X) equivalent if closure(�1(X)) =

closure(�2(X)). Closed constraint sets thus constitute a normal form for con-

straint sets, albeit a not very practical one. In the sequel we will de�ne a more

practical normal form.

De�nition 8.6 (consistency)

A closed constraint set �(X) is called consistent if it satis�es the following prop-

erties:

(i) if hX�i
:
= c 2 �(X) and hX�i

:
= d 2 �(X) then c = d;

(ii) if hX�i
:
= c 2 �(X) and hX�%i

:
= � 2 �(X) then % = ";

(iii) hX�%i
:
= hX�i and hX�i

:
= hX�%i are not in �(X) for any � and non-empty

%.

8.1 Feature structures 153

f hXi
:
= [];

hX cati
:
= [];

hX head i
:
= [];

hX head tensei
:
= [];

hX head agri
:
= [];

hX head agr numberi
:
= [];

hX head agr personi
:
= [];

hX subjecti
:
= [];

hX subject headi
:
= [];

hX subject head agr i
:
= [];

hX subject head agr number i
:
= [];

hX subject head agr personi
:
= [];

hX objecti
:
= [];

hX cati
:
= *v ;

hX head tensei
:
= present ;

hX head agr numberi
:
= singular ;

hX head agr personi
:
= third;

hX subject head agr number i
:
= singular ;

hX subject head agr personi
:
= third ;

hX head agr i
:
= hX subject head agr i;

hX subject head agr i
:
= hX head agr i g

Figure 8.2: Closure of the constraint set in Figure 8.1(b)

An arbitrary constraint set �(X) is called consistent if closure(�(X)) is consistent.

We write CCS for the set of consistent constraint sets. 2

Corollary 8.7

If �(X) 2 CCS then closure(�(X)) 2 CCS . 2

De�nition 8.8 (mapping constraint sets to graphs)

For each consistent constraint set �(X) 2 CCS we de�ne a graph, as follows.

Vertices correspond to sets of left-hand sides of constraints. These sets, denoted

[hX�i], are de�ned by

[hX�i] = fhX�ig [fhX%i j hX�i
:
= hX%i 2 closure(�(X))g:

The graph �(X) = graph(�(X)) is de�ned by

U = f[hX�i] j hX�i
:
= [] 2 closure(�(X))g;

E = f[hX�i]
f
! [hX�fi] j hX�fi

:
= [] 2 closure(�(X))g:

The label of a vertex [hX�i] is de�ned by

154 8. Parsing schemata for uni�cation grammars

label([hX�i]) =

(
c if hX�i

:
= c 2 closure(�(X))

" otherwise
. 2

Lemma 8.9

For each �(X) 2 CCS it holds that graph(�(X)) 2 FG.

Proof. Direct from the following observations:

� if [hX�fi]
:
= [] 2 closure(�(X)) then also [hX�i]

:
= [] 2 closure(�(X)),

hence E is properly de�ned with respect to U ;

� if [hX�i]
f
! u and [hX�i]

f
! v then u = v;

� the graph has a root [hXi];

� there are no hX�i
:
= c and hX�i

:
= d with c 6= d, hence each label is uniquely

de�ned;

� moreover, if hX�%i
:
= � 2 closure(�(X)) for non-empty % then the consis-

tency of �(X)) guarantees that there is no hX�i
:
= c 2 closure(�(X)), hence

label([hX�i]) = ". 2

De�nition 8.10 (mapping graphs to a constraint sets)

For each feature graph �(X) 2 FG we de�ne a constraint set. To that end, we

label each vertex with an auxiliary path label . If there are several paths to a

vertex, we take the lowest one in lexicographical order. Formally: let r be the root

of �(X), then

path label(u) = minf% j r
%
�! ug:

A constraint set constraints(�(X)) is (uniquely) de�ned by

�V (X) = fhXpath label(u)i
:
= c j label(u) = cg;

�E(X) = fhXpath label(u)i
:
= [] j u is a leaf ^ label(u)

:
= "g;

�C(X) = fhXpath label(u)i
:
= hX%i j r

%
�! u ^ % 6= path label(u)g;

�(X) = �V (X) [�E(X) [�C(X): 2

Lemma 8.11

For each graph �(X) 2 FG it holds that constraints(�(X)) 2 CCS .

Proof. Let �(X) 2 FG. We verify the constraints for consistency of De�nition

8.6. (i) follows from the de�nition of �V (X); (ii) because in �(X) only leaves are

labelled; (iii) because the graph is acyclic. 2

8.1 Feature structures 155

De�nition 8.12 (normal form)

The function nf : CCS �! CCS is de�ned by

nf (�(X)) = constraints(graph(�(X)):

nf (�(X)) can be thought of as the normal form of a constraint set. It is, roughly

speaking, a constraint set with constraints that are minimal in lexicographical

order. We write nf CCS for the set of constraint sets that satisfy nf (�(X)) = �(X).

2

In order to compute a normal form, it is not necessary to construct a graph and

then afterward deconstruct it. An algorithm to obtain the normal form of a con-

straint set is shown in Figure 8.3. It is left to the reader to verify the correctness

of this algorithm; our main concern right now is the existence of the normal form,

rather than its computation.

procedure normalize �(X)

begin

repeat each of the following steps

replace hX�i
:
= hX%i by hX%i

:
= hX�i

if % < �;

replace hX�%i
:
= � by hX�0%i

:
= �

if �0 < � and hX�i
:
= hX�0i 2 �(X);

delete hX�%i
:
= hX�0%i from �(X)

if hX�i
:
= hX�0i 2 �(X) and % 6= ";

delete hX�i
:
= [] from �(X)

if hX�%i
:
= � 2 �(X) for some % 6= "

or if hX�i = c

until no more of these steps can be applied

end;

Figure 8.3: A simple normalization procedure for constraint sets

Lemma 8.13

When we restrict graph to constraints in normal form only, the functions

graph : nf CCS �! FG and

constraints : FG �! nf CCS

156 8. Parsing schemata for uni�cation grammars

are bijections. Moreover, they are each other's inverse.

Proof: straightforward. 2

8.2 Feature lattices

We will now de�ne a lattice structure for constraint sets and feature graphs. First,

we recall the de�nition of a lattice.

De�nition 8.14 (lattice)

Let X be an arbitrary set (with elements X;Y; : : :) and v a partial order on X .

The pair (X ;v) is called a lattice if

(i) There is a top element T 2 X and a bottom element B 2 X such that

B v X v T for each X 2 X .

(ii) For each pair of elements X;Y 2 X there is a lowest upper bound (lub),

denoted X t Y , that satis�es

(a) X v X t Y and Y v X t Y ;

(b) for each Z such that X v Z and Y v Z it holds that X t Y v Z.

(iii) For each pair of elements X;Y 2 X there is a greatest lower bound (glb),

denoted X u Y , that satis�es

(a) X u Y v X and X u Y v Y ;

(b) for each Z such that Z v X and Z v Y it holds that Z v X u Y . 2

De�nition 8.15 (nf CCSL, FGL)

We de�ne a set ?CCS by

?CCS= VC [EC [CC :

(This is not a constraint set according to De�nition 8.4, as ?CCS is not �nite)

We de�ne a graph ?FG = (U?; E?) by

U? = r;

E? = fr
f
! r j f 2 Feag:

(This is not a feature graph according to De�nition 8.4, as ?FG is not a dag. The

vertex r can be thought of as labelled with all constants at once.)

Furthermore, we extend graph and constraints by

graph(?CCS) = ?FG;

8.2 Feature lattices 157

constraints(?FG) = ?CCS :

We extend the domains of constraint sets and feature graphs by

nf CCSL = nf CCS [f?CCSg;

FGL = FG [f?FGg:

When it is clear from the context which domain is meant, we drop the index and

simply write ? for inconsistent. 2

De�nition 8.16 (subsumption)

A subsumption relation v is de�ned on CCSL by

�1(X) v �2(X) if closure(�1(X)) � closure(�2(X)):

A subsumption relation v is de�ned on FGL by

�1(X) v �2(X) if constraints(�1(X)) v constraints(�2(X)): 2

Note that �(X) v ? for any �(X). It happens to be the case that ? is the top

element of the lattice structure over constraint sets. This is somewhat unfortunate,

because in lattice theory ? usually denotes the bottom element. On the other hand,

it is not uncommon to interpret ? as \inconsistent". This notational problem can

be solved, simply by reversing the lattice structure. If we write w and u, rather

than v and t, we have ? as the bottom of the lattice. This is equally problematic,

however, as it is not intuitively appealing to write u for a symbol that is to be

interpreted as a union of constraints. Hence we stick to the notation as introduced

in De�nition 8.16.

Theorem 8.17 (lattice structure)

(a) (nf CCSL;v) is a lattice with bottom fhXi
:
= []g and top ?CCS.

(b) (FGL;v) is a lattice with bottom graph(fhXi
:
= []g) and top ?FG.

(c) graph : nf CCSL �! FGL is an isomorphism with respect to v;

constraints : FGL �! nf CCSL is the inverse isomorphism.

Proof.

(a) The top and bottom properties are trivial.

The existence of a lub for any two constraint sets �1(X); �2(X) 2 nf CCSL

is shown as follows. We write �0 for closure(�1(X) [�2(X)).

If �0 is inconsistent, then ? is obviously the lub.

Otherwise, assume �00 2 CCS with �1(X) v �00 and �2(X) v �00.

Then closure(�1(X)) � closure(�00), and closure(�2(X)) � closure(�00).

Hence �0 � closure(�00), and nf (�0) is the least upper bound in nf CCSL.

The existence of a glb follows in similar fashion.

158 8. Parsing schemata for uni�cation grammars

(c) Straight from Lemma 8.13 and De�nition 8.16.

(b) Direct from (a) and (c). 2

We can extend the relation v to cover the entire set of consistent constraint sets

CCS . Note, however, that (CCS [f?g;v) is not a lattice, because the lub is not

uniquely de�ned.

Corollary 8.18

For any pair of consistent constraint sets in normal form �1(X); �2(X) 2 nf CCS

it holds that

�1(X) t �2(X) = nf (�1(X) [�2(X)) 2

We have de�ned t as a least upper bound, derived from the subsumption relation

v. In practical applications, we see t as an operator that allows to construct new

feature structures by merging the features of existing feature structures. How such

a merge is carried out in an e�cient manner is not a direct concern here. We will

come back to that issue in Chapter 9.

Having proven that normal forms of consistent constraint sets and feature

graphs are isomorphic, we can abstract from the particular representation and

simply call it a feature structure. We write '(X) to denote a feature structure,

or simply ' if it is not relevant which object X is characterized by the features

in '. A feature structure will be interpreted in an opportunistic manner either as

feature graph or as constraint set, whatever is most convenient.

We write '(X):� to denote the substructure of '(X) that is (in the graph repre-

sentation!) the largest subgraph of which [hX�i] is the root. We write '(X):� = c

if (in constraint set representation!) hX�i
:
= c 2 closure('(X)).

As an informal notation for feature structures we write avms, feature graphs or

constraint sets. It is not required that a constraint set be in normal form. Normal

forms were important because the lattice structure is de�ned on normal forms, but

for any practical application any equivalent speci�cation of a constraint set will

do as well. Hence, as we are not going to use normal forms, we do not need to

explicitly specify a linear order on Fea and Const.

With the conceptual machinery introduced so far, we can now explain the

di�erence between type identity and token identity. Consider the following feature

structures:

'1 =

2
6664
f :

�
f : c

g : d

�

g :

�
f : c

g : d

�
3
7775 ; '2 =

2
6664
f :

1 �
f : c

g : d

�

g :
1

3
7775 :

8.3 Composite feature structures 159

Then the substructures '1:f and '1:g are called type identical : they have the

same value, but they are di�erent structures. The substructures '2:f and '2:g

are called token identical : they refer to a single structure (and have the same value

a fortiori). Note that '1 v '2; because the constraint set of '2 can be obtained

from the constraint set of '1 by adding a constraint (i.c. hXfi
:
= hXgi). The

di�erence between these structures comes to light when either structure is uni�ed

with '0 =
h
g :

�
h : e

�i
, yielding

'1 t '0 =

2
666664
f :

�
f : c

g : d

�

g :

2
4 f : cg : d

h : e

3
5

3
777775 v '2 t '0 =

2
66664
f :

1

2
4 f : cg : d

h : e

3
5

g :
1

3
77775 :

In the sequel, we write the usual equality symbol (=) for type identity and a

dotted equality symbol (
:
=) to denote token identity. So we have '1:f = '1:g,

'2:f = '2:g, '2:f
:
= '2:g, but '1:f 6

:
= '1:g.

The di�erence between type identity and token identity is only relevant for

substructures. For constants it doesn't make any di�erence whether a value is

token identical to or a copy of some given other constant.

8.3 Composite feature structures

So far we have de�ned feature structures, that capture the characteristic properties

of some object. It is essential, however, to add the conceptual machinery that

allows us to relate the features of di�erent objects to one another. To this end we

introduce feature structures that describe the features of a (�nite) set of objects.

Features can be shared between objects by means of token identity.

Composite constraint sets for sets of objects are only a minimal extension of

the constraint sets of Section 8.1: coreferencing is allowed between (features of)

di�erent objects. In the domain of feature graphs, we get a set of graphs that

may share subgraphs. Or, to put it di�erently, we get a single graph with multiple

roots.

De�nition 8.19 (multi-rooted feature graphs)

A multi-rooted feature graph is a structure �(X1; : : : ; Xk) = (U;E;R) with (U;E)

a �nite dag and R = fr1; : : : ; rkg � U , with the following properties:

(i) every edge is labelled with a feature;

(ii) if f and g are labels of edges originating from the same vertex, then f 6= g;

160 8. Parsing schemata for uni�cation grammars

(iii) leaves may be (but need not be) labelled with a constant, non-leaf vertices

do not carry a constant label;

(iv) For every u 2 U there is some r 2 R such that r �! u.

We call R the root set of the graph. The size of the root set must correspond

to the number of formal parameters X1; : : : ; Xk; the roots can be labelled with

identi�ers referring to the objects whose features are represented. Note that is

it not required that a root ri has no incoming edges. It is conceivable that one

root is the descendant of another root (and also that several roots coincide). In

that case, the features of one object are token identical with a substructure of the

features of another object.

We write MFG for the class of multi-rooted feature graphs. 2

De�nition 8.20 (composite constraint sets, closure)

Let X1; : : : ; Xk denote a �nite set of objects. A (composite) constraint set �(X1;

: : : ; Xk) is a �nite set of constraints from the domains of value constraints, exis-

tential constraints and composite coreference constraints, de�ned as follows:

VC = fhXi�i
:
= c j 1 � i � k ^ � 2 Fea� ^ c 2 Constg;

EC = fhXi�i
:
= [] j 1 � i � k ^ � 2 Fea�g;

CCC = fhXi�i
:
= hXj%i j 1 � i � k ^ 1 � j � k ^ �; % 2 Fea�g:

The closure of a constraint set is obtained as in De�nition 8.5, with X replaced

by Xi or Xj as appropriate. 2

De�nition 8.21 (consistency)

A closed composite constraint set �(X1; : : : ; Xk) is called consistent if it satis�es

the following properties:

(i) if hXi�i
:
= c 2 �(X1; : : : ; Xk) and hXi�i

:
= d 2 �(X1; : : : ; Xk) then c = d;

(ii) if hXi�i
:
= c 2 �(X1; : : : ; Xk) and hXi�%i

:
= � 2 �(X1; : : : ; Xk) then % = ";

(iii) hXi�%i
:
= hXi�i and hXi�i

:
= hXi�%i are not in �(X1; : : : ; Xk) for any i �,

and non-empty %.

An arbitrary composite constraint set �(X1; : : : ; Xk) is consistent if closure(�(X1;

: : : ; Xk)) is consistent.

We write CCCS for the set of consistent composite constraint sets. 2

De�nition 8.22 (mappings, normal form)

The mappings graph and constraints can be extended to composite constraint

sets and multi-rooted feature graphs in the obvious way (and it can be veri�ed

8.3 Composite feature structures 161

straightforwardly that these functions are well-de�ned).

The function nf : CCCS �! CCCS is de�ned by

nf (�(X1; : : : ; Xk)) = constraints(graph(�(X1; : : : ; Xk));

We write nf CCCS for the set of constraint sets that satisfy

nf (�(X1; : : : ; Xk)) = �(X1; : : : ; Xk). 2

De�nition 8.23 (substructures)

Let �(X1; : : : ; Xk) = (U;E; fr1; : : : ; rkg) 2 MFG describe the features of a set of

k objects. The feature graphs of a subset of this set of objects are described by a

subgraph, as follows.

Let fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg.

Then �(Xi1 ; : : : ; Xim) = (U 0; E0; fri1; : : : ; rimg) is de�ned by

U 0 = fu 2 U j rij �! u for some j (1 � j � m)g;

E0 = fu!v 2 E j u; v 2 U 0g:

Similarly, a substructure is de�ned for closed constraint sets3.

Let �(X1; : : : ; Xk) be a closed constraint set. A (closed) substructure

�(Xi1 ; : : : ; Xim) for fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg is de�ned by

�(Xi1 ; : : : ; Xim) = fhXij�i
:
= c 2 �(X1; : : : ; Xk) j 1 � j � mg [

fhXij�i
:
= [] 2 �(X1; : : : ; Xk) j 1 � j � mg [

fhXij�i
:
= hXil%i 2 �(X1; : : : ; Xk)

j 1 � j � m ^ 1 � l � mg:

For �(X1; : : : ; Xk) 2 nf CCCS and fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg we de�ne a

substructure �(Xi1 ; : : : ; Xim) as follows.

Let �0(X1; : : : ; Xk) = closure(�(X1; : : : ; Xk));

then �(Xi1 ; : : : ; Xim) = nf (�0(Xi1 ; : : : ; Xim)). 2

De�nition 8.24 (composite feature lattices)

We de�ne a set ?CCCS by

?CCCS= VC [EC [CCC :

As inconsistent MFG we de�ne a multi-rooted graph ?MFG= (U?; E?; R?) with

an in�nite root set:

U? = R? = fr1; : : :g;

3We cannot simply apply the same de�nition to arbitrary constraint sets: if a feature of
some Xij

is token identical with an object that is no longer represented in the substructure,

all constraints relating to that part of the deleted substructure must be taken into account as
well. Only in closed constraint sets it is guaranteed that every feature of an object is completely

described by constraints for that object.

162 8. Parsing schemata for uni�cation grammars

E? = fri
f
! rj j ri; rj 2 R? ^ f 2 Feag:

Each vertex ri can be thought of as being labelled with all constants at once.

The functions graph and constraints are extended to map ?CCCS and ?MFG onto

each other.

We de�ne the domains

nf CCCSL = nf CCCS [f?CCCSg;

MFGL = MFG [f?MFGg: 2

8.4 Composite feature lattices

Before we de�ne subsumption on composite feature structures, we must clarify the

distinction between objects and formal parameters. It is our purpose to derive a

binary operator t that can be used to unify feature structures. A feature struc-

ture '(X1; : : : ; Xk) t '(Y1; : : : ; Yl) combines the features of both structures. It is

important to know, however, which X's and which Y 's refer to identical objects.

Let, for example, X3 = Y2 and all other Xi and Yj be di�erent. Then in the

uni�ed feature structure '(X1; : : : ; Xk) t '(Y1; : : : ; Yl) there is (a parameter for)

an object that will contain both the features of '(X3) and '(Y2). (Note, however,

that '(X3) and '(Y2) are separate feature structures. Features can be shared

across objects (or parameters) within a single composite feature structure, but fea-

tures can not be shared across di�erent composite feature structures.) Hence it is

essential to know which parameters denote which objects, so that the right pairs

of features are uni�ed when we unify two composite feature structures. Therefore

we assume the existence of a (possibly in�nite but countable) domain of objects

and postulate that each parameter refers to an object.

In a practical notation, we could annotate the uni�cation with which param-

eters should be considered to refer to the same object. The above case can be

denoted as

'(X1; : : : ; Xk) tX3=Y2 '(Y1; : : : ; Yl):

As indices to the uni�cation we write (sequences) of equalities that denote cor-

respondence between formal parameters of either argument. In the unlikely case

that all formal parameters are di�erent we could write t; (but this operation will

not be used in the sequel). Hence, when we write an unquali�ed lub symbol t it

should be clear from the context which parameters of both arguments refer to the

same object. This will usually be the case.

In practical use, we see t as an operator that can be used to construct new

feature structures from existing feature structures. But before we start using it,

we have to de�ne t formally as a least upper bound in a lattice.

8.4 Composite feature lattices 163

De�nition 8.25 (subsumption)

A subsumption relation v is de�ned on nf CCCSL as follows:

�1(X1; : : : ; Xk) v �2(Y1; : : : ; Yl) holds if

(i) fX1; : : : ; Xkg � fY1; : : : ; Ylg, and

(ii) closure(�1(X1; : : : ; Xk)) � closure(�2(X1; : : : ; Xk)).

A subsumption relation v is de�ned on MFGL by

�(X1; : : : ; Xk) v �2(Y1; : : : ; Yl) holds if

constraints(�1(X1; : : : ; Xk)) v constraints(�2(Y1; : : : ; Yl)). 2

Theorem 8.26 (lattice structure)

The following statement hold:

(a) (nf CCCSL;v) is a lattice with the empty constraint set as bottom and top

?CCCS.

(b) (MFGL;v) is a lattice with the empty graph as bottom and top ?MFG.

(c) graph : nf CCCSL �!MFGL is an isomorphism with respect to v;

constraints :MFGL �! nf CCCSL is the inverse isomorphism.

Proof: straightforward extension of the proof of Theorem 8.17 and preceding

lemmata. 2

Corollary 8.27

For consistent composite constraint sets in normal form

�1(X1; : : : ; Xk); �2(Y1; : : : ; Yl) 2 nf CCCS it holds that

�1(X1; : : : ; Xk) tXi1
=Yj1 ;:::;Xim

=Yjm
�2(Y1; : : : ; Yl) =

nf (�1(X1; : : : ; Xk) [�2(Y1; : : : ; Yl)

[fhXi1i
:
= hYj1i; : : : ; hXim i

:
= hYjm ig). 2

As with constraint sets and feature graphs, we will blur the distinction be-

tween composite constraint sets and multi-rooted feature graphs. We simply write

'(X1; : : : ; Xk) to denote a composite feature structure for k objects. As in 8.1

we write � to denote both lattices (nf CCCSL;v) and (MFGL;v). If we need

one particular representation we will pick the one that is easiest to work with,

depending on the circumstances.

From a composite feature structure '(X1; : : : ; Xk) one can derive a feature

structure '(Xi) for any object, by taking the appropriate substructure. As a

convenient notation we write

'(Xi) = '(X1; : : : ; Xk)jXi

164 8. Parsing schemata for uni�cation grammars

to denote that a feature structure for an object Xi is obtained by retrieving it

from some composite structure.

Up to now we have only attributed features to sets of objects. It is possible that

the objects themselves are contained in a structure of some kind. We call these

object structures so as avoid confusion with feature structures. Typical object

structures that we will use in the remainder of this chapter are

� A production A!� from a context-free grammar.

Wewrite '(A!�) as a convenient notation for a composite feature structure

'(A;X1; : : : ; Xk) that describes features of left-hand and right-hand side

symbols, where � = X1; : : : ; Xk.

� A tree hA; �i.

We write '(hA ; �i) as a convenient notation for a composite feature

structure '(A; : : : ; X1; : : : ; Xk), where � = X1; : : : ; Xk.

� An item [A; �].

Items were introduced in Chapter 4 as sets of trees. Here we should see them

as abstractions of trees: We only know the root and the yield of the item;

we do not know (or do not want to know) the internal nodes. Consequently,

features can be retrieved only from the nodes that are explicitly mentioned in

the denotation of the item. Hence, a composite feature structure of an item

[A; �] can be seen as a substructure of a composite feature structure of a

tree hA; �i, from which the features of internal nodes have been deleted.

We write '([A; �]) as a convenient notation for a composite feature struc-

ture '(A;X1; : : : ; Xk) where � = X1; : : : ; Xk.

A similar interpretation will be given to various kinds of items that give

various kinds of partial speci�cations of trees. As an example, consider the

item [S!NP�VP ; 0; 2], specifying the fact than an NP has been found by

scanning the �rst two words (but we don't care to remember what those

words were). A feature structure '([S!NP�VP ; 0; 2]) will be a composite

feature structure '(S;NP ;VP) that denotes the appropriate substructure of

'(hS!hNP ; a1a2iVP i).

8.5 Uni�cation grammars

With the lattice of (composite) feature structures, developed in in 8.1 and 8.3, we

can now formally de�ne a uni�cation grammar as it has been informally presented

in Chapter 7.

The de�nition of uni�cation grammars that we present here is not the most

compact one that is possible. One could eliminate the context-free backbone and

let syntactic category be a feature as any other. If one abstracts from the syntactic

8.5 Uni�cation grammars 165

category as a special feature, the de�nitions and notations become more terse, but

somewhat more obscure. For the sake of clarity and compatibility with the other

chapters, we will not do so.

We take it for granted that syntactic category is such a fundamental notion

that every feature structure for every constituent constraints at least a cat feature.

Hence, in order to obtain a legible notation, we continue to call nodes in a tree by

their syntactic category, like we did with context-free grammars.

De�nition 8.28 (uni�cation grammar)

A uni�cation grammar is a structure

G = (G;�; '0;W;Lex):

The di�erent parts of this structure are de�ned as follows:

� G = (N;�; P; S) is a context-free grammar. We write V for N [�; it is not

required that N \� = ;, a syntactic category is allowed to be both terminal

and nonterminal.

Furthermore, P is a multiset of productions, i.e., it is allowed that a single

context-free production occurs more than one time.

� � = �(Fea; Const) is the lattice of feature structures based on a set of features

Fea and a set of constants Const. It is assumed (but not necessary) that

Fea\Const = ;. We assume cat 2 Fea and V � Const, allowing for syntactic

categories to be represented in a feature structure.

� '0 : P!� is a function that a assigns a composite feature structure to each

production in the context-free grammar. For each production A!X1; : : : ; Xk

it is required that

'0(A):cat = A; '0(X1):cat = X1; : : : ; '0(Xk):cat = Xk

(where we write '0(A) as a shorthand for '0(A!X1 : : :Xk)jA and '0(Xi)

likewise).

Di�erent feature structures can be attributed to a single context-free pro-

duction by including the production more than once in P .4

� W is a set of lexicon entries, i.e., \real" word forms, as opposed to lexical

categories in �. It is assumed (but not necessary) that V \W = ;. We write

a; : : : for words in W .

� Lex is a function that assigns a set of feature structures to each word in W

(a word may have di�erent readings). Each '(a) 2 Lex (a) for each a 2 W

must have a feature cat. Moreover, it is required that '(a):cat 2 �.

4Alternatively, one could have P as a proper set and attribute a set of composite feature
structures to each production. There is no need to use multisets, then, but in the remainder of

the chapter the expression \'0(A!�)" has to be replaced by \some ' in '0(A!�)".

166 8. Parsing schemata for uni�cation grammars

We write UG for the class of uni�cation grammars G that satisfy the above prop-

erties. 2

One could argue whether the lexicon is part of the grammar or a separate

structure. The size of the grammar is reduced tremendously when the lexicon

is not contained in the grammar. It is somewhat arti�cial, however, to assume a

grammar with production features '0 existing independently of a lexicon (W;Lex).

The trend in uni�cation grammars is that more and more information is stored

in the lexicon, and the productions merely serve to prescribe concatenation and

feature uni�cation.

The reason for introducing an alphabet W , consisting of words with lexicon

entries, is the following. In context-free parsing of natural languages it is standard

use to consider the word categories, rather than the words from the lexicon, as ter-

minal symbols. In Chapters 2 and 3 we have introduced the notational convention

that leaves a; b; : : : in a parse tree indicate a terminal symbol, while leaves a; b; : : :

indicate that these leaves correspond to words from the actual sentence that has

to be parsed. In Chapter 2 the underlined terminal symbols were added to the

grammar in the following way:

� for the i-th word of the sentence, extra productions a!ai are added for each

possible lexical category of that word.

Veri�cation that a word occurs in the sentence, therefore, could be expressed in

terms of tree operations. For each auxiliary production we can supply a feature

structure structure (in constraint set notation)

'0(a!ai) = fhai
:
= haiig:

These auxiliary productions are not part of the grammar, but an implementation

technique that is used to construct the parse of a given sentence. We will stick to

this notation, for the moment, because it allows us to express the di�erence be-

tween terminals that have been matched with the sentence and those that haven't

been matched yet.

When we abstract from trees to items, in Section 8.7, we will simply have

initial items of the form [a; j � 1; j] with a feature structure '(a) 2 Lex (aj). The

careful distinction between matched leaves and non-matched leaves will no longer

be relevant then.

Grammars may include "-productions. In Section 3.1 we de�ned trees in such

a way that an "-production generates a leaf labelled ". Throughout the remainder

of this chapter we will simply assume that such leaves labelled " are not decorated

with any features. With this restriction, an arbitrary production A!� in all the

following de�nitions also applies to A!".

De�nition 8.29 (decorated trees)

A decorated tree is a pair (�; '(�)) with � 2 Trees(G) (cf. De�nition 3.10.(iii))

8.5 Uni�cation grammars 167

and '(�) a composite feature structure for the nodes in � , satisfying the following

conditions

(i) for each node A with children � there is some A!� 2 P such that

'0(A!�) v '(A!�);

(ii) for each node a with child ai it holds that '(a)
:
= '(ai);

(iii) for each node ai there is some '0(ai) 2 Lex (ai) such that '0(ai) v '(ai).

We write DTrees(G) for the set of decorated trees for some uni�cation grammar

G. 2

In 8.6, like in Chapter 2, we will construct parse trees by means of composition

of smaller trees. Any tree can be composed from atomic trees. When a new tree is

created that is a composition of two existing trees, its features will be merged. In

this way, context-free parse trees can be obtained that are decorated with feature

structures. We should make sure, however, that the feature structure of a parse

tree contains only \adequate" features (in a sense to be made precise shortly)

which are derived from the productions and lexicon. One can always extend the

decoration of a tree by adding new features out of the blue. For a decorated parse

tree, it should be required that no unnecessary features have sneaked in. The

following de�nition rules out \over-decorated" trees.

De�nition 8.30 (adequately decorated trees)

We de�ne adequate decoration of trees by induction on the tree structure.5 Let

G 2 UG be a uni�cation grammar and (�; '(�)) a decorated tree. The adequacy

of the decoration '(�) is de�ned as follows, depending on the form of � :6

5The reader might wonder why we do not give a direct de�nition of a minimally decorated

tree. One could call (�;'(�)) minimallydecorated if there is no decoration'0(�) 6= '(�) such that
'0(�) v '(�). The problem is, however, that adequately decorated trees need not be minimal.

As an example, consider a grammar with the following productions:

A!B; '(B) = [f : a]; (8.1)

A!B; '(B) = [g : b]; (8.2)

B!C; '(B) = [g : b]: (8.3)

A tree hA; Ci composed from the elementary trees of productions (8.1) and (8.3) is decorated
adequately, but not minimal.
In a practical grammar, it is likely that every adequately decorated tree is also minimally deco-

rated. One could rule out grammars that allow non-minimal adequate decoration by additional
constraints on the features of the productions and lexicon. This is not very relevant for the
current discussion, therefore we bypass the issue with a de�nition of adequacy that is based on
what ought to be proper composition of decorated trees.

6See De�nition 3.8 for various forms of linear tree notation.

168 8. Parsing schemata for uni�cation grammars

� � = ha!aii (i.e. � matches a terminal with a word in the sentence).

Then the decoration is adequate if '(a)
:
= '(ai) 2 Lex (ai).

� � = hA!�i (i.e. � covers a single production).

Then the decoration is adequate if '(�) = '0(A!�).

� � = hA!h� ; �ii (i.e., a production hA!�i constitutes the top of the

tree).

Let � = X1 : : :Xk, � = �1 : : :�k, such that hXi ; �ii is a subtree of � for

1 � i � k.

We distinguish between degenerate subtrees, having a single node Xi = �i
and no edges and nondegenerate subtrees having more than one node and

at least one edge. The (only) adequate decoration for a degenerate subtree

is the empty feature structure.

Then '(�) is an adequate decoration if there are adequately decorated trees

(hA!�i; '0(hA!�i));

(hX1 ; �1i; '
0(hX1 ; �1i)); : : : ; (hXk ; �ki; '

0(hXk ; �ki))

such that

'(hA!h�; �ii) = '0(hA!�i) t '0(hX1 ; �1i) t : : :

t '0(hXk ; �ki): 2

De�nition 8.31 (parse tree)

Let G be a uni�cation grammar, a1 : : :an a string inW �. A parse tree for a1 : : : an
is an adequately decorated tree of the form

(hS ; a1 : : :ani; '(hS ; a1 : : : ani))

with '(hS ; a1 : : :ani) 6= ? : 2

De�nition 8.32 (result)

Let (hS ; a1 : : : ani; '(hS ; a1 : : :ani)) be a parse for the sentence a1 : : :an.

The feature structure

'(S) = '(hS ; a1 : : : ani)jS

is called a result of the sentence. 2

In context-free parsing, parse trees are delivered as results. For uni�cation

grammars, it is assumed that the feature structure of the sentence symbol S con-

tains all relevant information. The parse tree is not an interesting object as such,

it serves only to compute '(S). Hence we can rephrase the parsing problem as

follows.

8.6 Composition of decorated trees 169

The parsing problem, given sentence a1 : : :an 2W � and a grammar G,

is to �nd all results '(S).

Unlike the context-free case, we can also de�ne a reversed problem.7

The generation problem, given a grammar G and a feature structure

'(S), is to �nd a sentence a1 : : : an 2W � for which '(S) is a result.

In principle it should be possible to use a single uni�cation grammar both for

parsing and generation. If a grammar is to be used in both directions, it must

be guaranteed that both the parsing algorithm and the generation algorithm halt.

A uni�cation grammar that is designed for use in a parser typically will not halt

when used for generation. Reversible uni�cation grammars, that can be used in

either direction, are studied in by Appelt [1987], Shieber [1988], Shieber et al.

[1990], Gerdemann [1991], and van Noord [1993].

8.6 Composition of decorated trees

In 8.5 we have de�ned what a valid parse tree is, but not yet how such a tree can

be computed. We will now de�ne an operator for tree composition. Using this

operator, one can create ever larger and larger trees from the initial trees based

on grammar productions and lexicon. Thus, in the framework of Chapter 2, we

have a primordial soup populated with adequately decorated trees.

The primordial soup is sound if all parse trees for the sentence that may appear

are adequately decorated and complete if all adequately decorated parse trees can

be constructed.

We de�ne a decorated tree composition operator �i and extend that to a

nondeterministic operator by dropping the index i. For technical reasons, the

context-free tree composition operator is de�ned slightly di�erently from the way

it was done in Chapter 2. (The di�erence is merely notational, the trees that can

be composed are the same).

De�nition 8.33 (context-free tree composition)

For a context-free grammar G and any i 2 IN a partial function

�i: Trees(G)� Trees(G) �! Trees(G)

is de�ned as follows. Let � = hX0 ; X1 : : :Xki and � = hY0 ; Y1 : : : Yli be

context-free trees in Trees(G). Then

� �i � =

(
hX0 ; X1 : : :Xi�1 hXi ; Y1 : : :YliXi+1 : : :Xki if Xi = Y0;

unde�ned otherwise:

7Wedekind [1988] has given such a de�nition for the generation problem in Lexical-Functional

Grammar

170 8. Parsing schemata for uni�cation grammars

In a more practical interpretation, we interpret �i as an operator to create new

trees from existing trees, rather than as a function. We drop the index i and

obtain a nondeterministic operator �. 2

De�nition 8.34 (decorated tree composition)

For a feature grammar G and any i 2 IN a partial function

�i: DTrees(G) �DTrees(G) �! DTrees(G)

is de�ned as follows. Let (�; '(�)) and (�; '(�)) be decorated trees with � =

hX0 ; X1 : : :Xki and � = hY0 ; Y1 : : :Yli. Then

(�; '(�)) �i (�; '(�)) =

8>><
>>:

unde�ned if � �i � is unde�ned

or '(�) tXi=Y0 '(�) =?;

(� �i �; '(�) tXi=Y0 '(�)) otherwise:

As in De�nition 8.33 we may drop the index i and interpret � as a nondeterministic

operator.

We write (�; '(�)) � (�; '(�)) =? if the composition is not de�ned for any i. 2

The next lemma states that composition of adequately decorated trees yields

an adequately decorated tree. This result will not come as a surprise. But to be

formally correct it is necessary to state it as a separate result. Adequate decoration

was de�ned inductively by expanding a production tree with adequately decorated

trees. It follows easily (but not by de�nition) that arbitrary tree composition of

adequately decorated trees yields an adequately decorated tree.

Lemma 8.35

Let (�; '(�)) 2 DTrees(G) and (�; '(�)) 2 DTrees(G) be adequately decorated

trees. If (�; '(�)) � (�; '(�)) 2 DTrees(G) then (�; '(�)) � (�; '(�)) is also

adequately decorated.

Proof: by induction on the size of (�; '(�)) � (�; '(�)).

Let � = hA!h� ; �ii, � = X1 : : :Xk, � = �1 : : : �k as in De�nition 8.30. In

the composed tree � � �, some leaf in some �i is uni�ed with the root of �. Let

'0(hXi ; �ii) be the adequate decoration of hXi ; �ii from which the adequacy

of '(�) is derived. Then, using the induction hypothesis, we �nd that

(hXi ; �ii � �; '0(hXi ; �ii) t '(�))

= (hXi ; �ii; '
0(hXi ; �ii)) � (�; '(�))

is adequate. It is easily veri�ed that (�; '(�)) � (�; '(�)) is obtained by compo-

sition of (hA!�i; '0(hA!�i)) with (hX1 ; �1i; '
0(hX1 ; �1i)); : : : ; (hXi�1 ;

�i�1i; '
0(hXi�1 ; �i�1i)); (hXi ; �ii � �; '0(hXi ; �ii) t '(�)); (hXi+1 ;

�i+1i; '
0(hXi+1 ; �i+1i)); : : : ; (hXk ; �ki; '

0(hXk ; �ki)); as in De�nition

8.30. 2

8.7 Parsing schemata for uni�cation grammars 171

Theorem 8.36 (correctness of primordial soup for decorated trees)

A decorated tree (�; '(�)) with � = hS ; a1 : : :ani that is obtained by tree

composition � from decorated trees of the forms

(hA!�i; '0(A!�i)) and

(ha!aii; '(a!aii)) with '(ai) 2 Lex (ai) and '(a)
:
= '(ai)

is adequate. Moreover, each adequately decorated parse can be constructed from

such trees.

Proof.

The soundness (context-free parse trees are adequately decorated) is a direct con-

sequence of Lemma 8.35. It is trivial to prove (with induction on the size of the

tree) that all adequately decorated trees can be composed, hence completeness

follows a fortiori. 2

8.7 Parsing schemata for uni�cation grammars

In 8.5 we have introduced uni�cation grammars and 8.6 we have proven that the

Primordial Soup framework for decorated trees is sound and complete. Integrating

all this into context-free parsing schemata is mainly a matter of notation.

There is, however, a single important di�erence between parsing schemata for

context-free grammars and uni�cation grammars, with far-reaching consequences.

In the context-free case any item needs to be recognized only once. When an

already recognized item is recognized again, it should be ignored. For uni�cation

grammars, in contrast, a single item context-free item can be recognized multiple

times, each time with a di�erent decoration. These are to be regarded as di�erent

objects. Hence we may face the situation that a parsing schema with only a �nite

set of valid context-free items may yield in�nitely many decorations to these items.

At this very abstract level we will not worry about in�nitely many decorations

for a single context-free item. There are various ways to construct parsing algo-

rithms that recognize only a relevant �nite subset of valid decorated items. This

will be discussed at more length in Chapter 9.

We will �rst formulate a parsing schema UG that formalized what we did in

Section 7.2: Constituents are recognized purely bottom-up. This can be regarded

as the canonical parsing schema for uni�cation grammars.

A domain of items can be de�ned by adding feature structures to the usual

CYK items. We could write

IUG = f[(X;'(X)); i; j] j X 2 V ^ 0 � i � j ^ '(X) 6=?g

where '(X) is obtained by restricting the composite feature structure of the tree

hX ; ai+1 : : :aji to the features of the top node. Throughout the remainder of

172 8. Parsing schemata for uni�cation grammars

this chapter items are decorated with feature structures, therefore we do not need

to mention '(X) explicitly in the notation of an item. Hence we write [X; i; j] as

usual, rather than [(X;'(X)); i; j].

The hypotheses represent all feature structures o�ered by the lexicon for all

words in the sentence:

H = f[a; j � 1; j] j '(a) 2 Lex (aj)g: (8.4)

Schema 8.37 (UG)

It is obvious, however, that deduction steps for productions with larger right-hand

sides can be added in similar fashion.

For an arbitrary uni�cation grammar G 2 UG we de�ne a parsing system PUG =

hIUG;H;DUGi by

IUG = f[X; i; j] j X 2 V ^ 0 � i � j ^ '(X) 6=?g;

D�1 = f[X1; i0; i1]; : : : ; [Xk; ik�1; ik] ` [A; i0; ik]

j A!X1 : : :Xk 2 P ^ k � 1 ^

'(A) = ('0(A!X1 : : :Xk) t '(X1) t : : :t '(Xk))jAg;

D" = f ` [A; j; j] j A!" 2 P ^ '(A) = 'o(A!")g;

DUG = D�1 [D";

and H as in (8.4).

Many uni�cation grammars that have been written to cover (parts of) natural

languages have only productions that are unary or binary branching. In that case,

the de�nition of D can be simpli�ed to:

D(1) = f[X; i; j] ` [A; i; j]

j A!X 2 P ^ '(A) = ('0(A!X) t '(X))jA g;

D(2) = f[X; i; j]; [Y j; k] ` [A; i; k] j A!XY 2 P ^

'(A) = ('0(A!XY) t '(X) t '(Y))jAg;

DUG = D(1) [D(2):

Sets of deduction steps D(k) for other values of k can be added likewise. 2

It is not necessarily the case that the parsing schema UG yields a �nite set

of decorated items for an arbitrary grammar and sentence; even worse, the pars-

ing problem for an arbitrary uni�cation grammar is undecidable. Several su�-

cient conditions that guarantee �niteness of the UG schema are known from the

literature,8 but no general necessary and su�cient condition is known. Hence we

8The o�-line parsability constraint [Bresnan and Kaplan, 1982] and the stronger notion of

depth-boundedness [Haas, 1989] guarantee a �niteness.

8.7 Parsing schemata for uni�cation grammars 173

simply assume that a grammar G has been de�ned in such a way that the pars-

ing schema UG will halt. For uni�cation grammars designed for parsing natural

languages this does not seem to be problem. The underlying idea is that the

meaning of a sentence, that will be captured somewhere in the result, is derived

compositionally from the meaning words, via intermediate constituents; there is

little reason to write a grammar such that ever more meaning is added to the same

constituent.

In the sequel, we will assume that a uni�cation grammar G has the property

that for any string only a �nite number of valid decorated items exists. How the

grammar writer guarantees that this is the case (for example by making sure that

one of the su�cient conditions is kept) is of no concern to us here. When we

discuss other parsing schemata, the �niteness issue will come up again. Adding

other fancy kinds of deduction steps | notably top-down prediction of features

| may jeopardize the �niteness. In such a case we will show for a newly de�ned

schema P that if a parsing systemUG(G) halts, then P(G) will also halt. In other

words, the �niteness in bottom-up direction is the responsibility of the grammar

writer, whereas the �niteness in top-down direction is the responsibility of the

parser constructor.

Earley-type parsers for uni�cation grammars that incorporate top-down pre-

diction are discussed, among others, by Shieber [1985a], Haas [1989], and Shieber

[1992]. In Chapter 11 a head-driven parsing schema will be de�ned that starts

parsing those words that can be expected to yield features that are most restric-

tive for top-down prediction.

We will now look at an Earley parser, formalizing what has been informally

explained in Section 7.1. A domain of items for the Earley schema is properly

described by

IEarley(UG) = f[(A!���; '(A!���)); i; j] j

A!�� 2 P ^ 0 � i � j ^

'0(A!��) v '(A!���) ^

'(A!���) 6=? g;

(8.5)

In order to simplify the notation, we attach identi�ers to items. When an item

is subscripted with a symbol �; �; �; : : :, this symbol can be used in the remainder

of the expression to identify the item. Moreover, we write '(�) for the feature

structure '(A!���) of an item [(A!���; '(A!���)); i; j]�. Furthermore, as

with the CYK items, we do not mention the feature structure explicitly in the

item. Thus we simplify (8.5) to

IEarley(UG) = f[A!���; i; j]� j A!�� 2 P ^ 0 � i � j ^

'0(A!��) v '(�) ^ '(�) 6=? g;

(8.6)

Another useful notational convention is the following. Rather than writing '(�)jX
for the feature structure ofX derived from some composite feature structure within

an item �, we write '(X�).

174 8. Parsing schemata for uni�cation grammars

Schema 8.38 (Earley(UG))

For an arbitrary uni�cation grammar G 2 UG a parsing system PEarley(UG) =

hIEarley(UG);H;DEarley(UG)i is de�ned by IEarley(UG) as in (8.6);

DInit = f ` [S!�; 0; 0]� j '(�) = '0(S!)g;

DScan = f[A!��a�; i; j]�; [a; j; j + 1]� ` [A!�a��; i; j + 1]�
j '(�) = '(�) t '(a�)g;

DCompl = f[A!��B�; i; j]� ; [B!�; j; k]� ` [A!�B��; i; k]�
j '(�) = '(�) t '(B�)g;

DPred = f[A!��B�; i; j]� ` [B!�; j; j]�
j '(�) = '(B�) t '0(B!)g;

DEarley(UG) = DInit [DScan [DCompl [DPred;=

and H as in (8.4). 2

A uni�cation grammar G for which UG(G) is �nite, may cause an in�nite

number of top-down predictions. A simple way to solve this (and the standard

way to parse a uni�cation grammar with a conventional active chart parser) is to

limit the top-down prediction to the context-free backbone and replace DPred by

DPred0

= f [A!��B�; i; j]� ` [B!�; j; j]� j '(�) = '0(B!) g:

It is not di�cult to show that the modi�ed Earley schema yields only �nitely many

di�erent decorated items if theUG schema is known to do so. In Chapter 9 we will

investigate more sophisticated techniques to prevent in�nitely many decorations

for a single context-free item.

We have given two examples of parsing schemata for uni�cation grammars.

It is clear that other context-free parsing schemata can be extended with feature

structures in similar fashion.

8.8 The example revisited

We return to the example of Section 7.2 and show how the schema Earley(UG)

can be used to parse our example sentence. The lexicon and productions for the

cat catches a mouse were shown in �gures 7.1 and 7.2 on pages 144 and 145. In a

PATR-style grammar, the composite feature structures '0 are typically denoted by

a constraint set. Here we will represent all feature structures, single and composite,

by avms.

In an Earley item of the form [A!���; i; j], we are interested only in the

features of A and �. Features of A will be used to transfer information upwards

8.8 The example revisited 175

through a parse tree (when an item [A!���; i; k] is used at some later stage as the

right operand of a predict step). Features of � that are known already are used as

a �lter to guarantee that � will be of \the right kind" in whatever sense imposed

by those features. The features of � need not be remembered. Features of � that

are of interest for the remainder of the parsing process will have been shared with

A or �, other features are irrelevant. Our purpose, here, is to construct a resulting

feature for S, rather than a context-free parse.

We start with an item [S!�NP VP ; 0; 0], supplied with the features from

'0(S!NP VP). The decorated item is shown in Figure 8.4.

[S!�NP VP ; 0; 0]

S 7�!

2
4 cat : S

head :
1

3
5

NP 7�!
2 �

cat : NP
�

VP 7�!

2
66664
cat : VP

head :
1 � �

subject :
2

3
77775

Figure 8.4: The initial item

No features are predicted for the subject (other than that its category should

be NP). Hence, an item [NP!�*det *n ; 0; 0] is predicted that is decorated with

'0(NP!*det *n). For the sake of brevity we skip the deduction steps

[NP!�*det *n; 0; 0]; [*det; 0; 1] ` [NP!*det�*n ; 0; 1];

[NP!*det�*n; 0; 1]; [*n; 1; 2] ` [NP!*det *n�; 0; 2];

the reader may verify that the decorated item [NP!*det *n�; 0; 2] as displayed in

Figure 8.5 is obtained. A complete step combines the items of Figures 8.4 and 8.5

into a decorated item [S!NP�VP ; 0; 2] as shown in Figure 8.6. The features of

the NP have been included in the VP through coreferencing.

From Figure 8.6 we predict an item [VP!�*v NP ; 2; 2], as shown in Figure

8.7. The subject feature that is shared between VP and *v causes the subject

information to be passed down to the verb. Consequently, a verb can be accepted

only if it allows a subject in third person singular. This is indeed the case for

176 8. Parsing schemata for uni�cation grammars

[NP!*det *n�; 0; 2]

NP 7�!

2
6666664

cat : NP

head :

2
6664
agr :

�
number : singular

person : third

�

trans :

�
pred : cat

det : +

�
3
7775

3
7777775

Figure 8.5: A completed NP

[S!NP �VP ; 0; 2]

S 7�!

2
4 cat : S

head :
1

3
5

VP 7�!

2
66666666666664

cat : VP

head :
1 � �

subject :

2
6666664

cat : NP

head :

2
6664
agr :

�
number : singular

person : third

�

trans :

�
pred : cat

det : +

�
3
7775

3
7777775

3
77777777777775

Figure 8.6: Complete applied to Figures 8.4 and 8.5

8.8 The example revisited 177

[VP!�*v NP ; 2; 2]

VP 7�!

2
6664
cat : VP

head :
1

subject :
2

3
7775

*v 7�!

2
666666666666666664

cat : *v

head :
1 � �

subject :
2

2
6666664

cat : NP

head :

2
6664
agr :

�
number : singular

person : third

�

trans :

�
pred : cat

det : +

�
3
7775

3
7777775

object :
3

3
777777777777777775

NP 7�!
3 �

cat : NP
�

Figure 8.7: Predict applied to Figure 8.6

178 8. Parsing schemata for uni�cation grammars

[VP!*v�NP ; 2; 3]

VP 7�!

2
66666666666666666666666666666664

cat : VP

head :

2
66666666664

tense : present

agr :
1

trans :

2
6664
pred : catch

arg1:
2

arg2:
3

3
7775

3
77777777775

subject :

2
66666664

cat : NP

head :

2
66664
agr :

1 �
number : singular

person : third

�

trans :
2 �

pred : cat

det : +

�
3
77775

3
77777775

object :
3

3
77777777777777777777777777777775

NP 7�!

2
64
cat : NP

head :

�
trans :

3

�
3
75

Figure 8.8: Scan applied to Figure 8.7 and \catches" on page 144

8.9 Other grammar formalisms 179

the initial item [*v ; 2; 3], decorated with the lexicon entry for catches on page 144.

Hence we obtain the item [VP!*v �NP ; 2; 3] with a decoration as shown in Figure

8.8. The *v entry has been deleted, as its salient features are also contained in

the VP feature structure. Note that hNP head transi is now coreferenced with

hVP head trans arg2i, through the coreference in the (no longer visible) feature

structure of the verb.

We can continue to deduce decorated items in similar fashion. It is left to the

reader to verify that application of the deduction steps

[VP!*v �NP ; 2; 3] ` [NP!�*det *n ; 3; 3];

[NP!�*det *n; 3; 3]; [*det; 3; 4] ` [NP!*det�*n ; 3; 4];

[NP!*det�*n; 3; 4]; [*n; 4; 5] ` [NP!*det *n�; 3; 5];

[VP!*v �NP ; 2; 3]; [NP!*det *n�; 3; 5]; ` [VP!*v NP�; 2; 5];

[S!NP�VP ; 0; 2]; [VP!*v NP�; 2; 5] ` [S!NP VP �; 0; 5]

results in a decorated �nal item as shown in Figure 8.9.

[S!NP VP�; 0; 5]

S 7�!

2
66666666666666664

cat : S

head :

2
66666666666664

tense : present

agr :

�
number : singular

person : third

�

trans :

2
666664

pred : catch

arg1:

�
pred : cat

det : +

�

arg2:

�
pred : mouse

det : �

�

3
777775

3
77777777777775

3
77777777777777775

Figure 8.9: A �nal item

8.9 Other grammar formalisms

We will briey mention some di�erent kinds of uni�cation grammars and then

discuss the related formalisms of attribute grammars and a�x grammars.

180 8. Parsing schemata for uni�cation grammars

The earliest type of uni�cation grammar is De�nite Clause Grammar (DCG),

de�ned by Pereira and Warren [1980]. DCG is based on terms rather than fea-

ture structures. It is inextricably linked with the programming language Prolog

[Clocksin and Mellish, 1981]. DCG, basically, o�ers some additional syntactic

sugar for encoding grammars directly into Prolog.

In the last decade, a variety of grammar formalisms based on feature struc-

ture uni�cation has emerged. The Computational Linguistics community has

been enriched with Lexical-Functional Grammar (LFG) [Kaplan and Bresnan,

1982], Functional Uni�cation Grammar (FUG) [Kay, 1979, 1985], Generalized

Phrase Structure Grammar (GPSG) [Gazdar et al., 1985], PATR9 [Shieber 1986],

Categorial Uni�cation grammar (CUG) [Uszkoreit 1986], Uni�cation Categorial

grammar (UCG) [Zeevat et al., 1987], Head-Driven Phrase Structure Grammar

(HPSG) [Pollard and Sag, 1987, 1993], Uni�cation-based Tree Adjoining Gram-

mars (UTAG) [Vijaj-Shanker et al., 1991]. This list is not exhaustive.

The word \grammar" that appears in all these formalisms, has subtly di�erent

meanings in di�erent cases. On the one hand, one can see grammar as a formalism

that has no meaning per se, but can be used to encode grammars for whatever

purpose. Typical examples of this class are DCG, FUG and PATR. On the other

hand, one can interpret grammar as a description of phenomena that occur in

natural language. Such a grammar does not only o�er a formalism but, more

importantly, also a linguistic theory that is expressed by means of that formalism.

Typical examples of this class are LFG, GPSG and HPSG. We will further discuss

this in Chapter 15.

The feature structure formalism that we have used here is taken from the 1986

version of PATR (with exception of the extension to composite feature structures).

It was designed by Shieber to be the most simple feature structure formalism,

containing only the bare essentials. A lot of bells and whistles can be added, of

course. The use of lists, which is admittedly cumbersome in PATR notation, can

be simpli�ed by introducing a special list notation. We have used untyped feature

structures: any feature can have any value. In a typed feature structure formalism,

the value of a feature is restricted to particular types speci�cally de�ned for that

feature. A useful extension to increase the e�ciency of uni�cation grammarparsing

is coverage of disjunctive feature structures. We will come back to this in Chapter

9.

We have stipulated | as in PATR| that feature graphs contain no cycles. The

practical reason is that it simpli�es the uni�cation algorithms, and cyclic feature

structures seem to have little linguistic relevance. In HPSG, the feature formalism

does not explicitly ban cycles, but in the 1988 version [Pollard and Sag, 1987] they

simply did not occur in any of the types prescribed for HPSG grammars. The

9The formalism is called PATR-II, to be precise, and quite di�erent from a �rst version of
PATR that has fallen into oblivion (and hence the letters \PATR" in PATR-II no longer form

an acronym).

8.9 Other grammar formalisms 181

1993 version of HPSG [Pollard and Sag, 1993], however, has somewhat di�erent

types and found an application for cyclic structures. Some linguists argue that

the head of a noun phrase is the determiner, rather than the noun (the so-called

DP hypothesis). In the latest version of HPSG, this matter is solved by letting

both the determiner and the noun regard themselves as head of the NP and each

other as a subordinate constituent. Hence either constituent is subordinate to a

subordinate structure of itself.

Uni�cation grammars are related to attribute grammars, introduced by Knuth

[1968, 1971], that have been used in compiler construction for 25 years. There are

some basic di�erences between attribute grammars and uni�cation grammars, but

from a formal point of view there is little objection to call both constraint-based

formalisms. The di�erence between both formalisms is to a large extent a di�erence

in culture: attribute grammars are typically used by computer scientists to denote

the semantics of programming languages, while uni�cation grammars are typically

used by computational linguists to capture syntactic and semantic properties of

natural languages.

Attribute grammars stem from the age that higher programming languages

all were imperative languages. The basic statement is the assignment: a value,

obtained from evaluating an expression, is assigned to an identi�er. Expressions

can be functions (i.e. sub-programs computing a value) of arbitrary sophistication.

Within the imperative programming paradigm, therefore, it is the most natural

approach to de�ne attributes of a constituent as functions of other attributes of

other constituents. The constraints in an attribute grammar can be thought of

assignments:10

hattributei := hexpressioni

where hexpressioni is a function of attributes of other symbols in the same pro-

duction.

Uni�cation grammars, in comparison draw heavily upon the declarative pro-

gramming style as incorporated in Prolog. A Prolog clause foo(X,Y) speci�es

the relation between X and Y. If X is instantiated then foo can be used to assign

a value to a variable Y, and reversed, if Y is instantiated then a variable X can

get a value by calling foo11. Similarly, in uni�cation grammars we specify (com-

mutative) equations that have to be true. In which order the features have to

10One could use attribute grammars also within the functional programming paradigm. Lazy
evaluation can be used to solve some dependency problems easier and more elegantly than in the
imperative paradigm, but the central notion of functional dependency remains.

11In the actual practice of Prolog programming, however, few clauses do really allow this.
There is a di�erence between speci�cation and computation: it is very well possible that the
Prolog gets stuck in an in�nite loop of the \wrong" argument is uninstantiated. This is similar
to the fact that a uni�cation grammar designed for parsing typically can't be used for generation,
although the general formalism is bidirectional.

182 8. Parsing schemata for uni�cation grammars

be computed is irrelevant, it is not even possible to express such considerations

within the formalism.

Research on attribute grammars, therefore, tends to focus on other issues than

research on uni�cation grammars. A classical issue is that of noncircularity : if

there is a circle of attributes in a parse tree that are all functionally dependent

on each other, then it is impossible to compute a decoration for the tree. An

often used su�cient (but not necessary) condition is that of L-attributedness. An

attribute grammar is L-attributed, informally speaking, if all attributes can be

computed in a single pass in a top-down left-to-right walk through a context-free

parse tree. A subclass that is particularly useful in compiler construction is the

class of LR-attributed grammars. These, roughly speaking, allow the attributed to

be computed on the y by an LR parser. The literature contains a host of di�er-

ent parsing algorithms for LR-attributed grammars. See, e.g., Jones and Madsen

[1980], Pohlmann [1983], Nakata and Sassa [1986], Sassa et al. [1987], and Tarhio

[1988]). Each one de�nes a particular class of grammars on which it is guaranteed

to work correctly. All these classes are subtly di�erent, however, because they de-

pend on the guts of the proposed algorithm. A taxonomy is presented by op den

Akker, Melichar and Tarhio [1980]. A fundamental treatment of attribute evalua-

tion during generalized LR parsing (cf. Chapter 12) is given by Oude Luttighuis

and Sikkel [1992, 1993].

\There are no fundamental di�erences between a�x grammars [: : :] and at-

tribute grammars [: : :]", Koster [1991a] remarks in an article on a�x grammars

for programming languages. \The two formalisms di�er in origin and notation,

but they are both formalizations of the same intuition: the extension of parsers

with parameters".

A�x grammars are a particular kind of two-level or van Wijngaarden grammars

[van Wijngaarden, 1965], and were formalized by Koster [1971]. One can see the

context-free productions of an a�x grammar as production schemata, de�ning sets

of productions for di�erent combinations of a�x values that can be attributed to

the symbols involved in the production. Hence, even though grammars written

as an a�x grammar can be automatically translated to attribute grammars, and

reversed, the basic formalism of a�x grammars is more general, because its lacks

the predominant concern with functional dependency.

Uni�cation grammars with a �nite feature lattice can be formulated directly

as a�x grammars (so-called A�x Grammars over a Finite Lattice (AGFL), see

Koster [1991b] for a simple introduction). Typically linguistic phenomena that

can be modelled with �nite feature lattices, or a �nite domain of typed feature

structures, are conjugation (i.e. the di�erent forms of a verb) and declination

(forms of nouns, adjectives, etc.,)

The main di�erence between a�x grammars and both attribute grammars and

uni�cation grammars is again a cultural one. The school of a�x grammars has

its own followers and its own formalism, but the work done in that area can be

8.10 Related approaches 183

formulated in terms of attribute grammars or uni�cation grammars as well.

8.10 Related approaches

Some explicit parsing algorithms for uni�cation grammars have been given in

the literature. Haas [1989] gives a GHR algorithm (i.e. Graham, Harrison, and

Ruzzo's optimization of Earley's algorithm, cf. Example 6.18) for grammars based

on terms. Shieber [1992] gives an Earley parser for a general class of uni�cation

grammars, rather than just the PATR-formalism. The notation of Shieber [1992]

| as opposed to the PATR variant of [Shieber, 1986], on which our treatment

of uni�cation grammars is based | allows for explicit control of feature percola-

tion within productions; a production A!X1 : : :Xk is a structure with features

0; : : : ; k that address the separate constituents. Our concept of multi-rooted fea-

ture structures for describing feature sharing between di�erent objects is more

general, because it can deal with arbitrary object structures.

The subject discussed here has some clear links with Shieber [1992], but we

have taken a rather di�erent perspective. Whereas Shieber gives a most general

account of uni�cation grammars and discusses only a single parsing algorithm, we

have used just a simple uni�cation grammar but given a formalism that allows to

specify arbitrary parsing algorithms in a precise but conceptually clear manner.

8.11 Conclusion

The main contribution of this chapter is the combination of parsing schemata and

uni�cation grammars in a single framework. Using the proper notation, parsing

schemata for uni�cation grammars are a straightforward extension of context-free

parsing schemata. The hardest task was in fact to come up with a proper notation.

Both parsing algorithms and uni�cation grammars are complex problem domains

on their own. In order to combine them into a single framework, a large conceptual

machinery and a rich notation is needed. It is for good reason that most articles

in the literature are speci�c in one domain, and informal in the other.

Context-free parsing is a computational problem area. A parse tree can be

de�ned as an object that satis�es certain properties, but the only way to �nd these

properties for a given sentence is to actually construct the parse tree. From this

point of view, attribute grammars are the more natural way to extend context-free

parsing with constraints and semantic functions. Decorating a tree with attributes

(whether simultaneously or in a second pass) is indeed application of functions.

The literature on uni�cation grammars, on the other hand, has a strong focus

on the declarative character of such a grammar. One describes the constraints that

are implied by the grammar, and the properties of individual words in the lexicon.

The theory leans heavily on logic, hence the prime operational concern is that

constraints can be expressed in a subset of �rst-order logic that allows automatic

184 8. Parsing schemata for uni�cation grammars

constraint resolution. This being proven, one can leave the act of satisfying the

constraints to an appropriate machine. From this point of view it makes sense

to concentrate on the static aspects of the grammar, rather than on the dynamic

aspects of how to construct a parse.

The dynamics of uni�cation and resolution sec have been studied extensively

in the literature. It constitutes an auxiliary domain that is used as a tool in

the construction of parsers for uni�cation grammars, often in the form of the

Prolog programming language. We have added a simple formalism that allows

explicit speci�cation of the dynamics of feature structure propagation in parsing

algorithms.

Chapter 9

Topics in

uni�cation grammar parsing

Context-free parsing schemata can be translated straightforwardly into parsing
algorithms. Such naive implementations might not be the most e�cient parsers,
and one can improve the e�ciency a lot by adding various kinds of sophistication to
the algorithm, but it is obvious how a �rst, simple implementation can be derived
from a parsing schema. For uni�cation grammars, however, it is not self-evident
how a parsing schema can be translated to even a prototype parsing algorithm.
In this chapter we will discuss various issues that have to be addressed in order to
obtain practical parsers for uni�cation grammars.

This chapter mostly surveys other research, rather than presenting our own,
but, for the above reason, we felt it useful to include it in this book.

An important issue that we have ignored so far is uni�cation: how to compute

the lub of two feature structures. We know that lubs exist, because of the lattice
structure, so we can write them down in parsing schemata. But when parsing
schemata are to be turned into parsing algorithms we must know how to unify.
Section 9.1 gives an overview of feature structure uni�cation and presents a simple
uni�cation algorithm in detail. More sophisticated versions are discussed in 9.2
and 9.3.

Another issue that enhances the practical value of uni�cation grammars is
disjunction within feature structures. Theoretically, a disjunctive feature structure
can be seen as a short notation for a set of non-disjunctive feature structures. From
a practical point of view, however, it won't do to have to rewrite everything into
disjunctive normal form before feature structures can be uni�ed. How to handle
disjunction is discussed in 9.4.

185

186 9. Topics in uni�cation grammar parsing

In Chapter 8 we have noted that a single context-free item may, in principle,
have an in�nite number of di�erent decorations. In Sections 9.5 and 9.6 we discuss
restrictors that discard irrelevant features from a feature structure. This solves
the problem of potentially in�nite chains of predictions.

A more general | and more important | use of restrictors is discussed in 9.7.
There are, in principle, two fundamentally di�erent ways to construct a parse for
a sentence. In a one-pass parser, each item is attributed with features when it
is recognized. An alternative strategy is employed by a two-pass parser, which
constructs a set1 of context-free parse trees �rst and adds suitable decorations in
a second pass. Using restrictors, one can construct intermediate kinds of parsers,
that take only some features into account in the �rst pass, while other features
are added in a second pass.

9.1 Feature graph uni�cation

In Chapter 8 we have dodged the issue of how to compute a lub '1(X)t'2(X) of
two arbitrary feature structures '1(X) and '2(X). The lattice structure guaran-
tees its existence, and examples were simple enough to do uni�cation \by hand".

There is a wealth of literature on the subject, one could even speak of uni�-
cation theory as a �eld of its own. As this topic is of such central importance to
uni�cation grammars, we make a digression from the main theme and discuss the
algorithmic aspects of feature structure uni�cation in some detail.

A good introduction to uni�cation theory is given by Siekmann [1989], a survey
of algorithms and applications is provided by Knight [1989]. It is important to
note, however, that uni�cation theory is concerned with term uni�cation, which
is not exactly the same as feature structure uni�cation. Feature structures can be
seen as an extension of terms. The most salient di�erence is that feature structures
allow coreferencing of arbitrary substructures whereas terms only allow coreferenc-
ing of leaves2. Hence it is not self-evident that a term uni�cation algorithm can be
extended to a feature structure uni�cation algorithm. In many cases, however, the
extension to feature structure uni�cation is straightforward. In the sequel we will
give such an adaptation of the algorithm of Huet [1976] as an easy and e�cient
algorithm for feature structure uni�cation.

We give a formal de�nition of term graphs similar to De�nition 8.3 for feature
graphs. This is only meant to formally write down the di�erence between both

concepts; we will make no further use of term graphs.

1or a shared forest, cf. Section 12.4
2Some term uni�cation algorithms make use of subgraph sharing for the sake of e�ciency.

Consider, for example, a term f(g(a;h(x)); h(g(a;h(x))); y) in which, using graph representation,
the term g(a;h(x)) can be represented by a single subgraph. It should be stressed, though,
that sharing of subgraphs in term graphs can always be done because it doesn't change the
interpretation of the term! Token identity (other than variables carrying the same names) is a
concept that simply does not apply to terms.

9.1 Feature graph uni�cation 187

De�nition 9.1 (term graphs)
We assume a domain of functions f; g; : : : where each function has a �xed arity

(i.e. number of arguments taken by the function). Functions with 0 arguments
are also called constants, denoted a; b; : : :. Furthermore, we have a set of variables
x; y; : : :.
A term graph is a (�nite) tree with the following properties

(i) Every non-leaf vertex v is labelled with a function. Let n be the arity of the
function, then there are n (ordered) outgoing edges from v.

(ii) Every leaf is labelled with a constant or a variable.

The edges are not labelled. 2

A term can be extended by instantiating a variable with another term. But it
is essential that the same variable (if it occurs more than once in the term) is

instantiated to the same term. Hence we can see a term tree as a directed acyclic
graph (dag) that allows subgraph sharing only for leaves labelled with variables,
not for other kinds of substructures.

We will not be concerned with terms and discuss how feature structures can
be uni�ed. This is easiest to carry out in graph representation. We will present
a feature graph uni�cation algorithm that is a straightforward adaptation of the
algorithm of Huet [1976] for term uni�cation. The task is to create a new feature
graph which is the lub of two given feature graphs. We call the new graph the
unifact and the given graphs the operands3. For the sake of clarity we assume that
the operands are single feature graphs. Extension to composite feature graphs is
trivial.

The general principle of the algorithm is quite simple. Input are two feature
graphs as operands (represented by their root vertex). The algorithm computes
an equivalence relation on the vertices of both operands, such that each equiva-
lence class corresponds to a single vertex in the unifact. Initially, all equivalence
classes are singletons, except the roots of the two operands, which form a single
class. When two equivalent vertices have a feature in common, then the children
corresponding to these features must be equivalent as well. That means, their
equivalence classes have to be merged. In this way a \transitive closure" can be
computed, either recursively or by keeping a list of pairs of vertices that still have
to be dealt with. Uni�cation fails (and ? is delivered as unifact) if an equivalence
class contains a pair of incompatible vertices. Two vertices are incompatible if

3It is tempting to call a graph that is to be uni�ed a \uni�cand", by analogy to \operand".

The proper form, however, following the Latin etymology, should be the gerundive \unifacend".
This does not have an equally persuasive connotation for the mathematical reader, hence we

stick to \operand".

188 9. Topics in uni�cation grammar parsing

� one is a leaf labelled with a constant and the other is a non-leaf vertex, or

� both are leaves but labelled with di�erent constants.

When no more equivalence classes need to be merged, and no incompatibility
has appeared, the unifact can be computed by contracting the classes to single
vertices. This has the consequence, however, that the operands are destroyed.
Therefore, this method is called destructive uni�cation. In 9.2 we will discuss a
nondestructive uni�cation algorithm.

Manipulation of the equivalence classes is done by the union and find oper-
ations as given by Aho, Hopcroft and Ullman [1974]. Vertices have an additional
class pointer that is used for maintaining the classes. The vertices that comprise
a class are linked in a tree structure (not to be confused with the dag structure of
the operands!). Each class has a unique representative: the root of its class tree.

The union operation merges two classes, simply by making the representative
of one class a child of the representative of the other class. The latter vertex
henceforth represents the merged class. As a general policy, the representative of
the larger class becomes the joint class representative.

The class representative of any vertex can be found by traversing a path along
the class pointers. The find operation searches for the root of a class tree in
a slightly more subtle way: whenever a path to the root is accessed, all vertices
on that path are made direct descendants of the root. Thus a deep class tree
is attened by access. This makes the complexity of the find operator (almost)
independent of the size of a class.

This general scheme for merging equivalence classes is called the union-find al-
gorithm. The complexity of a sequence of n union and find operations on a graph
of arbitrary size is almost linear : O(n�(n)), with � a very slowly increasing func-
tion. � is the inverse of a function F , characterized by F (1) = 1, F (n) = 2F (n�1).
Hence we �nd �(216) = 4, �(265536) = 5. When the union-find algorithm is used
for feature graph uni�cation in the context of natural language parsing, it is pretty
hard to come up with a realistic example where a class comprises as much as half
a dozen vertices. Hence the non-linear factor in the complexity of the algorithm
is purely theoretical and has no practical relevance at all.

In order to write down the algorithm in a more tangible form, we assume that
vertices in a feature graph carry the following attributes:

� features: a list of pairs (f; p) with f is a feature and p a pointer to another
vertex. We assume the set of possible features to be ordered, hence the list
of pairs can be ordered on features.

� kind : indicates the kind of vertex, i.e., constant , variable, or complex .

� label : denotes the label of a vertex (only applicable to leaves), i.e., a constant.

9.1 Feature graph uni�cation 189

� class: pointer to a vertex in the same equivalence class. If u.class = u then
u is the representative of the class.

There are three kinds of vertices: complex vertices have a non-empty list of features
and no label; constant vertices are labelled with a constant but have no features;
variable vertices have neither features nor label.

For the proper functioning of the algorithm it is essential that the representative
of an equivalence class has the characteristic properties (i.e. kind and either label
or features) of the entire class. Hence proper care has to be taken when two
classes are merged. One of both representatives will become the representative
of the merged class, and has to take over the relevant properties of the other
representative, if not already present.

A straightforward algorithm for the computation of the equivalence classes is

given in Figure 9.1. If the algorithm is run on composite feature structures, then
pairs to unify should be initialized with all pairs of roots that have to be uni�ed.

As a simple example, consider the feature graphs in Figure 9.2 as operands.
Initially, pairs to unify = f(1,6)g. A call to union(1,6) yields 1 as representative
of the combined class. (To be deterministic, we assume that the representative of
the �rst argument is chosen if both classes are equally large). Merging the feature
lists

1:features = [(f; 2); (g; 4)] and 6:features = [(f; 7); (g; 7); (h; 9)]

we get

1:features := [(f; 2); (g; 4); (h; 9)]

with pairs to unify = f(2; 7); (4; 7)g: We continue taking the union of f2g and
f7g, yielding an equivalence class f2; 7g represented by 2. Taking over the feature
k from 7, we get

2:features := [(j; 3); (k; 8)]:

A call union(4,7) merges the classes f2; 7g and f4g, choosing 2 as their joint
representative. Merging the features of 4 into those of 2 yields a last pair to be
uni�ed: (5,8). When this is done, we have reduced 10 vertices to 6 equivalence
classes

f1; 6g; f2; 4; 7g; f3g; f5; 8g; f9g; f10g

as shown in Figure 9.3. Vertices within one class are linked with ===, the repre-
sentative is indicated by a double circle. The actual tree structure of the equiva-
lence class is irrelevant.

As a �nal step, we have to contract the classes to single vertices. To that
end, pointers to a non-representative vertex must be changed to pointers to their

190 9. Topics in uni�cation grammar parsing

function compute equivalence classes(fg1 , fg2 : vertex): boolean;
(precondition: each vertex is a singleton equivalence class)

begin

pairs to unify := f(fg1 , fg2)g;
while pairs to unify is not empty
do take some pair (x; y) from pairs to unify ;

u := find(x); v := find(y);
if u 6= v

then if compatible(u; v)
then merge(u; v)
else return(false)

fi fi

od;
return(true)

end;

procedure merge(u; v: vertex);
(precondition: u, v are class representatives)

begin

x := union(u; v); (* i.e.: either x = u or x = v *)
if x = u then y := v else y := u fi;
if x.kind = variable and y.kind 6= variable

then x.kind := y.kind ; x.label := y.label fi;
for each feature-pointer-pair (f; p) 2 y.features
do if there is some (f; q) 2 x.features

then add (p; q) to pairs to unify

else add (f; p) to x.features
fi

od

end;

Figure 9.1: Computation of equivalence classes

9.1 Feature graph uni�cation 191

m1
�

�	

f @
@R

g

m2

?
j

m3
a

m4

?
k

m5
b

m6��
��
����)

f

g

@
@R

h

m7

?
k

m8
b

m9

?
l

m10
c

Figure 9.2: The operands

m
��
��
1

�
�	
f

@
@Rg

=== === === ===XXXX HHj
h

m
��
��
2

?
j

=== = === ===
HHHH HHj

k

m3
a

m4

?
k

m
��
��
5

b

=== ===

m
6��

��
����)

f

g

@
@R

h

m7

?
k

m8
b

m9

?
l

m10
c

Figure 9.3: The equivalence classes

representatives. I.e., if (f; p) is a feature and find(p) 6= p then it has to be replaced
by (f ,find(p)). In our example, the features (g; 4) becomes (g; 2) in 1.features and
(k; 8) is changed to (k; 5) in 2.features. The non-representative vertices are deleted
and every class is a singleton again. The �nal situation is shown in Figure 9.4.

A point that should be noted is that we do not allow cycles in feature graphs.
It is conceivable, however, that non-cyclic operands unify to a cyclic (and hence
inconsistent) graph. Hence the resulting graph has to be checked for cycles before
it is delivered as a unifact. In Section 9.2 we will discuss in more detail how
redirecting of pointers and checking for cycles can be done in a single sweep through
the graph.

The complexity of our version of Huet's algorithm for feature graph uni�cation
can be computed as follows. Let k be the maximum number of features (i.e., the
maximum outdegree) of a given vertex, and n the number of vertices in feature
graph. Then the algorithm has complexity O(kn�(kn)). This can be seen as
follows.

Pairs of vertices taken from pairs to unify come in two categories: the pair can

192 9. Topics in uni�cation grammar parsing

m1��
��
����)

f

g

XXXXXXXXXXXz

h

m2

?
j
@
@
@R

k

m3
a

m5
b

m9

?
l

m10
c

Figure 9.4: The unifact

either be already equivalent or not yet equivalent. Every pair generates two calls
to find. Only not-yet-equivalent pairs generate a call to merge, which calls union
and merges lists of up to k feature-pointer-pairs. Furthermore, up to k new pairs
of vertices can be added to pairs to unify . The number of not-yet-equivalent pairs
is limited to n (after which all vertices are equivalent), hence the total number
of vertices, counting duplicates, that can be added to pairs to unify is kn. The
O(kn) already equivalent pairs generate O(kn) union/find calls, the O(n) not
yet equivalent pairs generate O(n)union=find calls and O(kn) other work; two
lists of feature-pointer-pairs can be merged in O(k) steps when sorted on feature.
Thus computing the equivalence classes takes O(kn�(kn)) steps.

Subsequently, pointers to non-representative vertices have to be replaced by
pointers to their representatives. This takes O(kn) steps. Absence of cycles can
be detected in O(kn) steps using a depth-�rst search. In summary, O(kn�(kn))
steps su�ce.

Practically speaking, the factor O(�(kn)) is constant and we obtain a com-
plexity of O(kn). Moreover, for any particular uni�cation grammar, the number
of features emerging from a particular vertex will be bound by a constant number
k, in which case the complexity is reduced to O(n). Thus the algorithm is linear
for all practical purposes.

A much cited uni�cation algorithm for feature structures is the congruence

closure algorithm of Nelson and Oppen [1977, 1980]. A more general version is
given by Gallier [1986]. The congruence closure algorithm is also based on the
union-find algorithm of Aho, Hopcroft, and Ullman [1974] and can be regarded
as a generalization of Huet's algorithm. It computes equivalence classes of a set of
vertices of a graph consisting of an arbitrary number of components, starting from
an arbitrary initial partition into classes. Nelson and Oppen give a worst-case
complexity of O(m2), with m the number of edges in the graph. An implementa-
tion with a theoretically lower complexity bound O(m log2m) is given by Downey,
Sethi, and Tarjan [1980], but it appears not to be faster in practice [Nelson and

9.2 Nondestructive graph uni�cation 193

Oppen, 1980]. When restricted to c.q. reformulated speci�cally for feature graph
uni�cation, the congruence closure algorithm is very similar to the extension of
Huet's algorithm discussed above. A recent survey of union-find and related
algorithms is given by Galil and Italiano [1991].

Di�erent uni�cation algorithms with the same complexity as Huet's have been
given by Baxter [1973] for term uni�cation and A��t-Kaci [1984, 1986] for feature
structures. Truly linear term uni�cation algorithms also exist, but the improve-
ment is only theoretically relevant. Linear algorithms are given by Paterson and
Wegman [1987], de Champeaux [1986] and Martelli and Montanari [1977, 1982].
A quadratic (O(n2)) implementation of the (originally exponential) algorithm of
Robinson [1965] is given by Corbin and Bidoit [1983]. They claim their algorithm
to be simpler than the algorithm of Martelli and Montanari, and faster in practical
applications.

9.2 Nondestructive graph uni�cation

The graph uni�cation algorithm presented above destroys the operands in the pro-
cess of constructing a unifact. As operands typically must be used more than once,
each operand has to be copied before uni�cation takes place. Moreover, if the uni-
�cation fails, the copies are wasted entirely. It turns out that copying accounts
for more than half the time spent by a parser using a destructive uni�cation algo-
rithm [Karttunen and Kay, 1985], [Godden, 1990]. It is not too di�cult, however,
to change the uni�cation algorithm in such a way that uni�cation is nondestruc-
tive, i.e., the operands are not a�ected by the computation of the unifact. Rather
than a �nal situation as displayed in Figure 9.4, we would like to obtain a �nal
situation as shown in Figure 9.5. To that end, we make the following changes to
the algorithm:

� each equivalence class is represented by a new vertex, rather than a vertex
from one of the operands.

� when the unifact has been constructed, the class pointers of the operands
are reset.

An algorithm in this vein was �rst presented by Wroblewksi [1987]. When two
singleton classes are merged, a third vertex is created as their joint representative.
Only if two non-singleton classes are merged, a spurious vertex has been made,
apparently, because one of both new vertices su�ces to represent the merged class.
Subgraphs that occur in only one of the operands have to be copied for the unifact.

Wroblewski's algorithm has some practical problem when to decide that a
subgraph needs to be copied, which causes the algorithm to make double copies
in some weird cases. See [Wroblewski, 1987] for details. For resetting the class
pointers, Wroblewski suggests a simple implementation trick. Each class pointer
is annotated with a generation number . Any pointer with an obsolete generation

194 9. Topics in uni�cation grammar parsing

number should be regarded as a self-pointer (i.e. points to the vertex it origi-
nates from). Thus, after the unifact has been completed, incrementing the global
generation counter su�ces to reset all pointers in one stroke.

m1
�

�	

f @
@R

g

m2

?
j

m3
a

m4

?
k

m5
b

m11��
��
����)

f

g

@
@R

h

m14
�
�
��

A
A
AU

j k

m15
a

m16
b

m12

?
l

m13
c

m6��
��
����)

f

g

@
@R

h

m7

?
k

m8
b

m9

?
l

m10
c

Figure 9.5: An example of nondestructive uni�cation

The algorithm of 9.1 can be adapted with only a few changes. In the nonde-
structive algorithm a vertex has the following attributes:

� features, kind , label , class: as in 9.1.

� status: takes values old , new , and intermediate.

All vertices of the operands are old , newly created vertices are new . The interme-

diate state is a technical aid for the construction of the unifact from the �nal set
of equivalence classes.

We add a function n union for nondestructive union. It creates a new vertex
when the representatives of both classes are old. When classes represented by a
new and an old vertex have to be merged, we can simply take the existing new
vertex as a representative of the merged class. This is supported by the union

implementation in [Aho et al., 1974], which takes the root of the larger class tree
as the root of the merged class trees. The function n union is de�ned in Figure
9.6.

Figure 9.7 shows how the equivalence classes can be computed nondestructively.
It is guaranteed that the operands are not changed by the un�cation algorithm,
as no attribute of a vertex of an operand ever gets changed (with the exception of
the class pointer).

The complete uni�cation algorithm is sketched in Figure 9.8. Retrieving the
unifact from the �nal partition into equivalence classes is somewhat di�erent from
the destructive case. In a single walk through the new graph, the applicable feature
pointers are redirected, the new vertices are converted to old ones and the graph
is checked for cycles.

9.2 Nondestructive graph uni�cation 195

function n union(u; v: vertex) : vertex ;
(precondition: u, v are class representatives)

begin

if (u.status = new or v.status = new)
then w := union(u; v)
else create a new vertex w;

u:class := w; v:class := w; w:class := w;
w.kind := variable; w.label := none;
w.features := nil ; w.status := new

fi;
return(w)

end;

Figure 9.6: Nondestructive union

As feature graphs are acyclic by de�nition, the uni�cation should fail after
all if a cycle is detected. Cycle detection can be trivially incorporated in the
walk through the new graph. While going down, the status of new vertices is
changed into intermediate; while going up, the status of vertices is changed into
new . Clearly, the graph contains a cycle i� at some stage a new vertex is found
with an intermediate daughter.

The class pointers can be reset later by walking through the operands. A
more e�cient implementation, as suggested above, is to keep a global generation
counter; all class pointers can be invalidated by increasing the generation counter.

We will run through the example again, taking the graphs in 9.2 as operands.
Computing the equivalence classes proceeds as follows. Initially there is only

one pair to unify: (1,6), the pair of roots. Hence the equivalence classes f1g
and f6g are merged into f1; 6; 11g with the new vertex 11 representing the class.
The features of 11 are computed by merging 1:features = [(f; 2); (g; 4)] with
6:features = [(f; 7); (g; 7); (h; 9)], yielding

11:features = [(f; 2); (g; 4); (h; 9)]

With (2,7) and (4,7) as new pairs to be merged and the subgraph rooted by 9 to
be copied. Copy subgraph(9) creates a new vertex 12 as a representative of the
equivalence class f9; 12g. As 12.features := [(l; 10)], a new copy 13 of vertex 10 is
created, also labelled with the constant c.

Next, we merge 2 and 7 into f2; 7; 14g, with features j and k of vertex 14
pointing to 3 and 8, respectively. Using copy subgraph, these vertices are extended
to equivalence classes f3; 15g and f8; 16g. One pair is left to unify: (4,7). Hence
equivalence classes f4g and f2,7,14g are merged into f2; 4; 7; 14g. Following the

196 9. Topics in uni�cation grammar parsing

function compute equivalence classes(fg1 , fg2 : vertex): boolean;
(precondition: each vertex is a singleton equivalence class)

begin pairs to unify := f(fg1 , fg2)g;
while pairs to unify is not empty
do take some pair (x; y) from pairs to unify ;

u := find(x); v := find(y);
if u 6= v then

if compatible(u; v)
then merge(u; v)
else return(false)

fi fi

od;
return(true)

end;

procedure merge(u; v);
begin x := n union (u; v);

for y := u; v

do if y 6= x then

if x:kind = variable and y:kind 6= variable

then x.kind := y.kind ; x.label := y.label fi;
for each feature-pointer-pair (f; p) 2 y:features

do if there is some (f; q) 2 x:features

then add (p; q) to pairs to unify

else add (f; p) to x.features;
if find(p).status = old

then copy subgraph(find(p))
fi fi

od fi od

end;

procedure copy subgraph(x);
(precondition: x:class = x, x:status = old)

begin create a new vertex y; x:class := y; y:class := y;
y:kind := x:kind; y:label := x:label; y:status := new ;
y:features := copy list(x:features);
for each pair (f; q) 2 y:features

do if q:status = old then copy subgraph(q) fi od
end;

Figure 9.7: Nondestructive computation of equivalence classes

9.2 Nondestructive graph uni�cation 197

function unify(u; v: vertex): vertex
(precondition: each vertex is a singleton equivalence class)

begin

if compute equivalence classes(u; v)
then w := find(u);

if not wind up(w) then w := ? fi

else w := ?

fi;
reset the class pointers;
return(w)

end;

function wind up(v: vertex): boolean;
(redirects feature pointers as appropriate;

makes new vertices old; checks for cycles)
begin

if v:kind = intermediate then return(false) fi;
if v:kind = new

then v:kind := intermediate;
for each pair (f; w) 2 v:features

do y := find(w);
if y 6= w then replace (f; w) by (f; y) fi;
if not wind up(y) then return(false) fi;

od;
v:kind := old ;

fi;
return(true)

end;

Figure 9.8: The uni�cation algorithm

198 9. Topics in uni�cation grammar parsing

m1
�

�	

f @
@R

g

m2

?
j

m3
a

m4

?

k

m5
b

m6��
��
����)

f

g

@
@R

h

m7

?
k

m8
b

m9

?
l

m10
c

m
��
��
11= === = === ==

���������9
f

�
��+

g
HH HHjg

h

m
��
��
14= === = = ==

@
@
@R

k

�
�

��	
j

m
��
��
16

b

= = ==m
��
��
15

a

==

m
��
��
12= =

�
�
�	

l

m
��
��
13

c

= =

Figure 9.9: The equivalence classes in nondestructive uni�cation

de�nition of merge in Figure 9.7, we have to merge the features of 4 and 7 into

the features of 14. Both 4 and 7 have only feature k which is already present in
the feature list of vertex 14 (pointing to 8). Hence we add (5,8) and (8,8) to the
pairs to unify. As 8 and 8 are member of the same class, no work needs to be
done4. Unifying 5 and 8 means merging f5g and f8; 16g into the equivalence class
f5; 8; 16g.

The list of pairs is empty now. The situation is sketched in �gure 9.9. Equiv-
alent vertices are linked by ===, the representative is indicated with a double
circle.

From the graph in �gure 9.9 we can construct the unifact straightforwardly.
The features of 11, [(f; 2); (g; 4); (h; 9)], are replaced by

[(f; find(2)); (g; find(4)); (h; find(9))] = [(f; 14); (g; 14); (h; 12)]:

Similarly, to 14:features the list

[(j; find(3)); (k; find(5))] = [(j; 15); (k; 16)]

is assigned, and so on. Thus we construct the �nal graph, which was displayed in
�gure 9.5 on page 194.

The complexity of the nondestructive algorithm, like the destructive algorithm,
is theoretically O(kn�(kn)), with k the maximum outdegree of a vertex, and
practically O(kn). If k is considered constant (as it will be for any particular
grammar) the algorithm is linear in the size of the operands.

9.3 Further improvements

In uni�cation grammar applications, the nondestructive algorithm is more e�cient
than the destructive algorithm, because the operands need not be copied before

4One could also add a check in merge so as to prevent equivalent pairs to be put on the list

of pairs to be uni�ed.

9.3 Further improvements 199

uni�cation. The algorithm presented in 9.2 is by no means optimal, however. The
number of vertices to be copied can be further reduced by subgraph sharing . If a
feature exists in only one of the operands, it is usually not necessary to copy the
entire subgraph pointed to by that feature. The unifact could share a subgraph
with one of its operands. A uni�cation algorithm that exploits subgraph sharing
could create a unifact as shown in �gure 9.10. In our example, only 3 new vertices
need be created, rather than 6 as in �gure 9.5.

m1
�

�	

f @
@R

g

m2

?
j

m3
a

m4

?

k

m5
b

m6��
��
����)

f

g

@
@R

h

m7

?
k

m8
b

m9

?
l

m10
c

m11
��
QQs

f ?g
HH HHj

h

m12

?k
�
�

��	
j

m13
b

Figure 9.10: Subgraph sharing

A uni�cation algorithm that exploits subgraph-sharing is rather more involved;
it must keep track of the conditions under which subgraph sharing is safe. Sub-
graph sharing and coreferencing can interfere with each other, leading to incorrect
results. A more detailed treatment is given by Kogure [1990], who describes a
nondestructive uni�cation algorithm with subgraph sharing. This algorithm uses
a form of lazy copying. Subgraphs are shared between the unifact and an operand
as long there is no evidence that making a copy is necessary. When it is detected
that a descendant of a shared vertex will be a�ected by un�cation at some later
moment, the shared subgraph needs to be copied after all.

Kogure extends his \lazy incremental copy graph uni�cation algorithm" with
a strategy that �rst uni�es those features that are most likely to cause failure.
Such a strategy could be added to Huet-type algorithms as well, as no order is
prescribed in which pairs are to be taken from the list of pairs to be uni�ed.

Karttunen and Kay [1985] use a destructive uni�cation algorithm in combi-
nation with lazy copying: subgraphs are shared until one of the shared copies is
updated. Furthermore, feature graphs are represented in [Karttunen and Kay,
1985] by means of binary trees; a parent-child relation (i.e., an edge of the feature

graph) is represented by a search path in the binary tree. The method is not
worked out in great detail in the cited article.

Pereira [1985] does not copy feature graphs, but keeps updates to a feature
graph separately. The original feature graph is not changed, additions are kept in

200 9. Topics in uni�cation grammar parsing

a separate structure. Thus the cost of making copies is traded against the cost of
applying the update. This technique dates back to the theorem prover of Boyer
and Moore [1972].

Karttunen's \reversible uni�cation algorithm" [Karttunen, 1986] is in fact also
a nondestructive algorithm. Only temporary changes are made to the operands.
If the uni�cation succeeds, a separate unifact is constructed.

Tomabechi [1991] merges Karttunen's approach with the nondestructive algo-
rithm Wroblewski. He claims his algorithm to be twice as fast as Wroblewski's.
Like in [Karttunen, 1986], not a single new vertex is created until the uni�cation
is known to be successful. From Wroblewski [1987] he takes the technique to undo
all temporary changes to the operands in one stroke by using a global generation
counter.

Emele [1991] in a very readable paper comes up with an algorithm that merges
the approaches of Pereira [1985] and Wroblewski [1987] in an elegant fashion.
Vertices carry generation numbers. In addition, each feature graph is associated
with some speci�c generation. When a vertex is changed in a later generation, a
forwarding pointer to a new vertex is made. Thus a vertex has a history over time,
represented by a chain of vertices with non-decreasing generation numbers. When
a feature graph of a particular generation has to be retrieved, each vertex in this
graph is found by following the path of forwarding pointers up to the last vertex
that has a generation number not exceeding the generation asked for. In Emele's
algorithm the unifact is in fact the next generation of one of its operands. From a
single root, the unifact can be retrieved using a higher generation number, while
the operand can be retrieved using a lower generation number.

A disadvantage of Emele's approach is that the paths of forwarding pointers
cannot be shortened. Hence the complexity of searching a graph (and, conse-
quently, the complexity of uni�cation) is dependent on the length of its history as
well as its size. This makes the theoretical complexity essentially non-linear. It
seems likely, however, that Emele's algorithm might be superior in practice.

Finally, a somewhat di�erent approach is taken by Godden [1990] who intro-
duces \lazy uni�cation", i.e., uni�cation (rather than copying) of substructures is
delayed. This is in principle an interesting idea, but it needs substantial additional
overhead. While obtaining a speedup of 50 % compared to naive, destructive uni-
�cation, his algorithm is substantially slower than the ones from Tomabechi and

Emele.

It has been remarked by several authors that it depends on the particular ap-
plication which approach to reduce copying will perform best. A practical compar-
ison of the algorithms which are discussed by Karttunen and Kay [1985], Pereira
[1985], Karttunen [1986], Wroblewski [1987], Godden [1990], Kogure [1990] and
Emele [1991] will appear in [Emele, forthcoming].

9.4 Disjunctive feature structures 201

9.4 Disjunctive feature structures

By far the most interesting extension to the uni�cation grammar formalism is the
use of disjunctive feature structures. For a verb form \catch", for example, we
would like to write

hcatch head agri =
�
number : plural

�
_

�
number : singular
person : 1st _ 2nd

�

One could also add negation, and simply write down that the agreement of \catch"
is not third person singular.

It is always possible to avoid disjunction within feature structures by rewriting
them into disjunctive normal form. For the verb form \catch" we would then
obtain three lexicon entries with agreement features plural , �rst person singular

and second person singular , respectively5 . But for the sake of e�ciency it is not

desirable to use disjunctive normal form.

In order to obtain a graph representation for disjunctive feature structures,
we can modify the graph representation of standard feature structures as follows.
Every vertex is split into two vertices: a \top half" called a feature vertex and a
\bottom half" called a value vertex . All incoming edges go to the feature vertex;
all outgoing edges start from the value vertex. In the standard case, without
disjunction, every feature has exactly one value, i.e., every feature vertex has a
single outgoing edge to its corresponding value vertex.

In a disjunctive feature graph it is possible that a feature vertex is linked
to di�erent value vertices. If a feature vertex is linked to no value vertex, this
represents an inconsistency. A disjunctive feature graph is shown in �gure 9.11.

Feature vertices are represented by 4, value vertices by 5. In �gure 9.11(a) the
bipartite graph is shown. In a rather more practical notation, as shown in �gure
9.11(b), feature vertices that have exactly one value are combined with their value
vertices.

The same information can be represented by di�erent feature graphs. It is al-
ways possible to push the disjunction upwards to the top level. In that way we only
have to deal with standard feature graphs, but the number of di�erent alternatives
may grow rather large. For the simple example in �gure 9.11, two alternatives are
shown in �gure 9.12. In �gure 9.12(b) we have moved all disjunctions to the root
and we have obtained a disjunction over three nondisjunctive feature structures.

A graph representation for disjunctive feature structures is formally de�ned as
follows.

De�nition 9.2 (disjunctive feature graphs)
A bipartite directed graph G = hV1; V2; E1!2E2!1i has two sets of vertices V1; V2.

5The lexicon may also contain other entries for \catch" as, e.g., a verb in in�nitival form. But

that entry does not specify any agreement.

202 9. Topics in uni�cation grammar parsing

4

?
5

?
agr

4
�������

Z
Z
ZZ~

5
�

��	
num

@
@@R
pers

5

?
num

4

?

4
�
���
A
AAU

4

?
5

sg

5

1st

5

2nd

5

pl

k

?
agr

4
�

�
��=

Z
Z
ZZ~

5
�

��	
num

@
@@R
pers

5

?
num

k 4
�
���
A
AAU

k
sg

5

1st

5

2nd

pl

Figure 9.11: a disjunctive feature graph

k

?
agr

4
�

�
�

�
��+

?

Q
Q
Q
Q
QQs

5
�
���

num A
AAU
pers

5
�
���

num A
AAU
pers

5

?
num

k
sg

k
1st

k
sg

k
2nd

k
pl

4
�

�
�

�
��+

?

Q
Q
Q
Q
QQs

5

?
agr

5

?
agr

5

?
agr

k
�
���

num A
AAU
pers

k
�
���

num A
AAU
pers

k

?
num

k k k k kk
sg

k
1st

k
sg

k
2nd

k
pl

Figure 9.12: other graphs that carry the same information

9.4 Disjunctive feature structures 203

Edges in E1!2 go from a vertex in V1 to a vertex in V2, edges in E2!1 go from a
vertex in V2 to a vertex in V1. There are no edges connecting any pair of vertices
within V1 or V2.
The class of disjunctive feature graphs, DFG, is the class of �nite, rooted, bipartite
dags hVf ; Vv; Ef!v; Ev!fi with the following properties:

(i) the root is an element of Vf , all leaves are in Vv;

(ii) every edge in Ev!f is labelled with a feature;

(iii) if f and g are labels of edges originating from the same vertex in Vv, then
f 6= g;

(iv) all vertices in Vf have at least one outgoing edge;

(v) leaves are labelled with atomic values, non-leaf vertices have no label. 2

When we restrict the formalism to disjunctive feature trees, i.e., coreferencing
is not allowed, the uni�cation algorithms can be adapted straightforwardly. Let x
and y be two feature vertices, fu1; : : : ; umg the value vertices that are successors
of x and fv1; : : : ; vmg the value vertices that are successors of y. When x and y

have to be uni�ed, a new set of m � n value vertices fw11; : : : ; wmng is created,
where wij merges the features of ui and vj. If ui and vj appear to be inconsistent,
then wij can be discarded. Only if all w are inconsistent, the uni�cation of x and
y is inconsistent.

Extension of disjunctive feature graphs to a domain of multi-rooted disjunctive
feature graphs MDFG is straightforward.

When coreferencing is allowed, one has to take care that disjunction and coref-
erencing do not interfere with each other. This can always be avoided by pushing
all disjunctions outwards, until we have a disjunction over nondisjunctive feature
structures. In a more subtle approach we could allow coreferencing and disjunction
within a feature structure as long as certain restrictions are ful�lled.

De�nition 9.3 (safe disjunction)
A vertex v in a disjunctive feature graph is called circumventible if it has an
ancestor and a descendant such that there is a path from the ancestor to the
descendant that does not pass through v.
A disjunctive feature graph is called safe when every circumventible feature vertex
has exactly one successor. 2

A uni�cation algorithm for disjunctive feature graphs is safe if it makes sure that
no unsafe feature graphs are created. A variety of uni�cation algorithms for dis-
junctive feature graphs has been published, and we will not further pursue this
matter here.

204 9. Topics in uni�cation grammar parsing

Kasper [1987a] has proven that uni�cation of disjunctive feature structures
is NP-complete. But worst cases do not apply in ordinary grammars. Kasper
[1987a,b], Eisele and D�orre [1988], and D�orre and Eisele [1990] have come up with
algorithms that perform well in the average case. Some recent studies devoted to
various kinds of disjunctive feature structure uni�cation are given by Maxwell and
Kaplan [1989], Carter [1990], Hegner [1991], Nakano [1991]. A book with several
other articles on this subject is edited by Trost [1993].

V�eronis [1992] has presented a mathematical framework for disjunctive feature
structures based on hypergraphs, rather than bipartite graphs.

9.5 Restriction

In general, many di�erent decorations can be recognized for a single context-free
item. There are two general methods to reduce the number of decorations in a

chart parser for uni�cation grammars.
Firstly, we can apply the notion of subsumption. When di�erent decorations

'1(�) and '2(�) are recognized for some item �, and it holds that '1 v '2, then we
only need to retain (�; '1(�)) on the chart and we can delete (�; '2(�)). We have
assumed that only such uni�cation grammars G are used for which the parsing
system UG(G) is guaranteed to be �nite. Hence, by applying this subsumption
criterion, a �nite set of recognized decorated items can be replace by a smaller set.

A more fundamental problem, is the possibility in�nite set of decorations that
can be produced by adding top-down passing of features in a parsing schema. We
will discuss this problem in detail and present restrictors as introduced by Shieber
[1985a],6 to guarantee �niteness of the Earley schema for uni�cation grammars.

A restrictor is a kind of �lter that can be used to remove irrelevant features

from a feature structure. It is not necessary to de�ne restrictors for a particular
grammar \by hand"; in 9.6 it is shown how default restrictors can be de�ned as
a function of the grammar. An di�erent and use of restrictors is discussed in 9.7,
where only a restricted set of features is taken into account in the �rst pass of a
parser and secondary features are added in a second pass. But before we introduce
restrictors we will motivate their need by means of an example.

We will look at an example of a grammar for which the Earley schema produces
an in�nite number of items. Subcategorization of verbs can be encoded in feature
structures by giving a list of complements that a verb should have. The verb
\catches" has two complements (subject and direct object), which can be expressed

6It is important to note that we use the terminology and notation of [Shieber, 1985a], not
that of [Shieber, 1992]. Restriction, denoted j�, is replaced in the latter source by the a restriction

function %. Moreover, the restriction symbol j�is used there for a di�erent purpose, viz., restriction
of top-level features (and dependent substructures) by narrowing the domain from which these

are drawn.

9.5 Restriction 205

in a lexicon entry as in Figure 9.13. A verb that takes also an indirect object will
have a complement list of three NP s. Other verbs could take a PP as complement.

catches 7�!

2
6666666666666666666666666666666666666664

cat : VP

head :

2
6666666666664

tense : present

agr :
1 �

number : singular
person : third

�

trans :

2
66664
pred : catch

arg1:
2 � �

arg2:
3 � �

3
77775

3
7777777777775

subcat :

2
66666666666666664

�rst :

2
666664

cat : NP

head :

2
664 agr :

1

trans :
2

3
775

3
777775

rest :

2
66664
�rst :

2
64
cat : NP

head :

�
trans :

3

�
3
75

rest : end

3
77775

3
77777777777777775

3
7777777777777777777777777777777777777775

Figure 9.13: Lexical entry for \catches" with subcategorisation list

When subcategorization is deferred to the lexicon, the grammar could have a
production like

VP1!VP2NP

hVP1 head i
:
= hVP2 head i

hVP1 subcat �rsti
:
= hVP2 subcat �rsti

hVP1 subcat resti
:
= hVP2 subcat rest resti

hNPi
:
= hVP2 subcat rest �rsti

The VPs are indexed to distinguish them from each other. The complement list
in the subcat feature of VP1 is one shorter than the corresponding list of VP2.
That means (when applied to the verb \catches") that a transitive verb combined
with a direct object yields a structure that has the subcategory of an intransitive
verb. The �rst complement slot, which is reserved for the subject of the verb, is

206 9. Topics in uni�cation grammar parsing

not a�ected. But all post-complements of the verb can be swallowed in this way,
until a VP is left with only one (subject) complement.

[S!NP�VP ; 0; 2]

S 7�!

2
4 cat : S

head :
1

3
5

VP 7�!

2
666666666664

cat : VP

head :
1 � �

subcat:

2
66664
�rst :

2
64
cat : NP

head :

�
agr : : : :

trans : : : :

�
3
75

rest : end

3
77775

3
777777777775

Figure 9.14: The subject has been recognized

In the Earley schema for uni�cation grammars, a problem occurs when we
are to predict a VP . Suppose that we have a recognized item [S!NP �VP ; 0; 2]
as in Figure 9.14. We can predict an item [VP!�VP NP ; 2; 2], shown in Figure
9.15. Now we can predict another item [VP!�VP NP ; 2; 2] with a di�erent feature
structure, shown in Figure 9.16. We can continue along this line, predicting new
VPs with ever more complements.

There is no theoretical reason why such problems should occur in top-down
prediction and not in bottom-up parsing. One can construct uni�cation grammars
that cause a parser to loop in�nitely in either direction. But, from a practical point
of view, it is reasonable to expect that a uni�cation grammar, using the schema
UG, will yield only a �nite number of di�erent constituents for any sentence. It
less reasonable to expect the grammar writer to take into account sophisticated
parsing techniques, such as top-down prediction in order to reduce the amount of
recognized constituents that do not contribute to a parse of the sentence. Therefore
it makes sense to state that preventing in�nite loops in bottom-up parsing is
the responsibility of the grammar, whereas preventing in�nite loops in top-down
prediction is the responsibility of the parser.

A general solution to the above problem, due to Shieber [1985a], is called
restriction. The basic idea is quite simple. When an item is predicted, only a
relevant subset of the features is used. Irrelevant features, or sub-features beyond
a certain depth are simply deleted. In the case of the subcategorization list, for

9.5 Restriction 207

[VP1! �VP2NP ; 2; 2]

VP1 7�!

2
666666664

cat : VP

head :
1

subcat :

2
664 �rst :

2

rest :
3

3
775

3
777777775

VP2 7�!

2
666666666666666664

cat : VP

head :
1 � �

subcat :

2
66666666664

�rst :
2

2
64
cat : NP

head :

�
agr : : : :
trans : : : :

�
3
75

rest :

2
664 �rst :

4

rest :
3

end

3
775

3
77777777775

3
777777777777777775

NP 7�!

4 �
cat : NP

�

Figure 9.15: A VP predicted from Figure 9.14

example, we could decide that hVP subcat �rsti and hVP subcat rest �rsti are
relevant features, while hVP subcat rest resti is not relevant. When the irrelevant
tail of the subcategorization list is stripped o�, the items in Figures 9.15 and
9.16 become identical, and no more di�erent items [VP!�VP NP ; 2; 2] can be
predicted.

Restriction of features in predicted items might, in general, lead to recognition
of \useless" items that are incompatible with the features that have been deleted.
But, much more importantly, it will prevent an in�nite sequence of predictions.
When the features in predicted items are restricted to a �nite domain, it follows
immediately that only a �nite number of items can be predicted.

Further elaborations of the use of restriction are given by Gerdeman [1989],
Bouma [1991], Nakazawa [1991] and Harrison and Ellison [1992]. Haas [1989]
presents a general Earley-like parsing algorithm for depth-bounded uni�cation
grammars. A grammar is depth-bounded if all parse trees for all sentences have

208 9. Topics in uni�cation grammar parsing

[VP1! �VP2NP ; 2; 2]

VP1 7�!

2
666666664

cat : VP

head :
1

subcat:

2
664�rst :

2

rest :
3

3
775

3
777777775

VP2 7�!

2
66666666666666666664

cat : VP

head :
1 � �

subcat:

2
6666666666664

�rst :
2

2
64
cat : NP

head :

�
agr : : : :
trans : : : :

�
3
75

rest :

2
6664
�rst :

4

rest :
3

"
�rst :

�
cat : NP

�
rest : end

#
3
7775

3
7777777777775

3
77777777777777777775

NP 7�!

4 �
cat : NP

�

Figure 9.16: A VP predicted from Figure 9.15

a �nite depth. A simple uni�cation grammar with subcategorization as in the
above example is depth-bounded, because every verb has a �nite number of com-
plements. The user is referred to the cited papers for further details. We will only
incorporate Shieber's general solution into our parsing schema.

A restrictor is a feature structure that contains no constants and no corefer-
ences. One could see it | in graph notation | as feature tree where the leaves
carry no labels, or | in constraint notation | as a set of feature paths. We will
use the avm notation also for restrictors. The only di�erence in notation is that
we may delete the [] symbols to indicate that a feature has no value; any feature
without sub-features has no value by de�nition.

The idea, then, is the following. When a feature structure is restricted by
some restrictor, only those features remain that are explicitly mentioned in the

9.5 Restriction 209

restrictor. The constant values of the features allowed by the restrictor are not
prescribed and can vary according to the circumstances. In �gure 9.17 a suitable
restrictor is shown for a VP for a grammar with subcategorization by means of a
complement list.

	(VP) =

2
6666666664

cat :
head :

subcat:

2
66664
�rst :

2
4 head :

"
agr :

�
number :
person :

�#35
rest :

h
�rst :

�
cat :

�i

3
77775

3
7777777775

Figure 9.17: A suitable VP restrictor

The agreement of the subject is retained by the restrictor, because this is
precisely what prediction is being used for. The trans feature of the subject can
be disposed of, as it has no relevance to the recognition of a verb phrase. When
subject and VP are combined using a production S!NP VP the translations of
the NP and VP will be combined into a trans feature for S.

We will now give a formal de�nition of restrictors and restriction.

De�nition 9.4 (restrictor)
A restrictor is a constraint set that contains only existential constraints, i.e., con-
straints of the form hX�i

:
= []. 2

In a more practical notation, one could describe a restrictor as a set of paths,
rather than a set of constraints. But by de�ning a restrictor as a (special kind of)
constraint set, closure, normal form and constraint graphs follow automatically
from Section 8.1. Composite restrictors can be de�ned in similar fashion. We
will only use restrictors with a single parameter, however. We write 	(X) for a
restrictor7, whether it is a constraint set, a feature graph or a feature structure in
general.

Next we de�ne restriction, i.e., the application of a restrictor to a feature
structure. We will de�ne it in the constraint set domain, but it extends to the
feature graph domain as usual. Informally, applying a restrictor means that those
features that occur in the restrictor remain, with their constant values. Formally,
this is de�ned as follows.

7Shieber [1985a] used � to denote a restrictor, but we must use another symbol because �,

in this chapter, denotes the domain of feature structures.

210 9. Topics in uni�cation grammar parsing

De�nition 9.5 (restriction)
Let �(X) be a constraint set and 	(X) a restrictor. The restriction of �(X) by

	(X) is the set �0(X) � �(X) that satis�es the following conditions:

(i) if hX�i
:
= � 2 closure(�0(X)) then hX�i

:
= [] 2 closure((X));

(ii) if �00(X) � �(X) satis�es (i) then �
00(X) v �

0(X).

It is easy to verify that �0(X) is uniquely determined.
We write �(X) j�	(X) for the restriction of �(X) by 	(X). 2

It is important to note the di�erence between the restriction operator j�and
the glb operator u. If we have, for example,

'(X) =

�
number : singular
person : third

�
;

	(X) =
�
number :

�
=

h
number :

� �i
Then we obtain

'(X) j�	(X) =
�
number : singular

�
;

'(X) u	(X) =
h
number :

� �i
:

9.6 Default restrictors

If we de�ne a restrictor for each nonterminal B 2 N , we can change the predict

rule of the Earley parsing schema to

D
Pred = f[A!��B�; i; j]� ` [B!�; j; j]�

j '(�) = '(B�) j�	(B) t '0(B!)g

(where we assume that j�has operator precedence over t). Hence we could extend
a uni�cation grammar to a structure

G = (G;�;	; '0;W;Lex)

with 	 a function that assigns a restrictor to every nonterminal. But this is not a
satisfactory solution. One should not change the de�nition of a grammar only to
allow certain e�cient parsing techniques if this can also be obtained with grammars
as in De�nition 8.28. Hence we introduce the notion of a default restrictor that is
uniquely determined by G and '0.

The default restrictor for a nonterminal B can be de�ned informally as the
set of features for B that is obtained by collecting all features for B from all

9.6 Default restrictors 211

productions in which it occurs as a right-hand side symbol. One can take all
feature structures for B from productions A!�B�, throw away coreference and
constant values and then unify the remaining structures. (Note that this cannot
lead to inconsistency; because of the absence of atomic values there can be neither
value/value clashes nor feature/value clashes.)

Formally, a default restrictor is de�ned as follows.

De�nition 9.6 (default restrictor)

Let G = (G;�; '0;W;Lex) be a uni�cation grammar. For each B 2 N a default
restrictor 	0(B) is de�ned as the (unique) restrictor that satis�es the following
conditions:

(i) for any production A!�B� 2 P it holds that

'0(B!�B�)j
B

= '0(B!�B�)j
B
j�	0(B);

(ii) for any 	(B) that satis�es (i) it holds that 	0(B) v 	(B).

It is left to the reader to verify that 	0 is �nite and uniquely de�ned. The default
restrictor, hence, can be seen as a function 	0 : N � '0!�. 2

Thus, �nally, we can write down a restrictive version of the Earley parsing
schema.

Schema 9.7 (Earley(R))
For an arbitrary uni�cation grammar G = (G;�; '0;W;Lex) 2 UG a parsing sys-
tem P(IEarley(R);H;DEarley(R)) is de�ned by

IEarley(R) = f[A!���; i; j]� j A!�� 2 P ^ 0 � i � j ^

'0(A!��) v '(�) ^ '(�) 6=?g;

D
Init = f ` [S!�; 0; 0]� j '(�) = '0(S!)g;

D
Scan = f[A!��a�; i; j]�; [a; j; j + 1]� ` [A!�a��; i; j + 1]�

j '(�) = '(�) t '(a�)g;

D
Compl = f[A!��B�; i; j]� ; [B!�; j; k]� ` [A!�B��; i; k]�

j '(�) = '(�) t '(B�)g;

D
Pred = f[A!��B�; i; j]� ` [B!�; j; j]�

j '(�) = '(B�) j�	0(B) t '0(B!)g;

DEarley(R) = D
Init [D

Scan [D
Compl [DPred

;

and H as in (8.4). 2

Theorem 9.8 (halting of Earley(R))
For any uni�cation grammar G 2 UG and any string a1 : : :an 2W it holds that

if V(UG(G)(a1 : : : an)) is �nite,
then also V(Earley(R)(G)(a1 : : : an)) is �nite.

Proof. Straightforward. 2

212 9. Topics in uni�cation grammar parsing

9.7 Two-pass parsing

So far we have assumed that a parse for a uni�cation grammar is constructed by a
parsing schema that employs decorated items. This can be called one-pass parsing,
because the parse trees and their decorations (of which only relevant parts are
represented) are constructed simultaneously. As an alternative, one could apply
two-pass parsing to un�cation grammars, as follows:

� in the �rst pass a forest of context-free parse trees is constructed;

� in the second pass these parse trees are decorated;
trees with an inconsistent decoration are discarded.

One could re�ne the two-pass scheme into an arbitrary number of passes, where
each one adds some more detail to the end-product of the previous pass. One �nds
parsers for programming languages that have four or more passes. Details of such

implementations are of no importance here, but the distinction between one-pass
and two-pass is a fundamental one in our general framework.

In a two-pass parser, the �rst pass actually contains two phases. In the �rst
phase a set of items is recognized (based on some context-free parsing schema)
as usual. In the second phase of pass one, the recognized items that do not
contribute to a parse are located and discarded. How much items remain depends
on the grammar, the parsing schema and the sentence, but typically only a small
percentage remains.

While it is true that some valid context-free items are not recognized by a one-
pass parser (due to inconsistent decorations), two pass-parsing seems to be rather
more e�cient than one-pass parsing. Uni�cation is a rather expensive operation,
and by two-pass parsing a number of irrelevant uni�cation can be avoided.

The above considerations are as vague as they are general, because much de-
pends on the nature of the uni�cation grammar. We have assumed, for the sake of
simplicity, that there is some context-free backbone to the grammar. It is within
the limits of the formalism, however, to construct a grammar with a context-free
backbone

N = fXg; � = fXg; P = fX!X; X!XXg; S = X

and leave the traditional lexical category to some particular categorization feature.
This is in fact the way in which a uni�cation grammar without a context-free
backbone is to be emulated in our framework. It is clear that two-pass parsing
does not make sense for such a grammar.

In a more subtle approach we do not need to make a binary choice between one-
pass parsing and two-pass parsing. An intermediate form can, in general terms,
be described as follows:

9.7 Two-pass parsing 213

� in the �rst pass, only some primary features are used, the remaining sec-
ondary features are disregarded;

� in a second pass, the full decoration of the remaining items is obtained.

A formalism in which such an intermediate parser can be described has been in-
troduced already in 9.5. We can describe the primary features of each nonterminal
A by a restrictor 	(A). All feature structures in the �rst pass are trimmed by
a restrictor, both in bottom-up and top-down direction. It is important to re-
mark that restricted features constitute a �nite domain. That is, a context-free
backbone enhanced with primary features is a context-free grammar8 and thus
constitutes a larger context-free backbone for (essentially) the same grammar.

After the �rst pass, all recognized items that do not contribute to a parse
can be discarded. The secondary features, subsequently, are added only to the
remaining items.

A speci�cation of an intermediate parser can be given by means of a parsing
schema and an additional restrictor function 	 : N!� that de�nes the primary
features. For the implementation of such a parser it might be advantageous to
compile the context-free backbone with primary features into a larger context-free
grammar. This can be done mechanically.

Nagata [1992] reports on an experiment with a parser for Japanese, where the
original \course-grained" uni�cation grammar (i.e., a grammar with few context-
free productions) was turned into a medium-grained grammar by writing out the
verb subcategorizations in the context-free backbone. He obtained the following
results for a representative set of Japanese sentences.

rule granularity course medium medium

number of passes one one two

average runtime 30.2 sec 17.8 sec 8.7 sec

relative speed 1.0 1.7 3.5

Maxwell and Kaplan [forthcoming] did similar experiments with a (LFG) grammar
for English and come up with similar results.

While it is only natural that enlarging the context-free backbone is done by
hand for �rst experiments, this technique can be described at a very high level in
parsing schemata with the use of restrictors. An implementation that compiles a
mixed parser for a given uni�cation grammar and restriction function would be
a very useful tool for investigating which features should be primary in order to
obtain an e�cient parser.

8One can obtain a context-free grammar from a uni�cation grammar with a �nite feature
domain by treating each possible feature structure as a separate grammar symbol and writing

out the productions for all (�nite) cases accordingly

214 9. Topics in uni�cation grammar parsing

9.8 Conclusion

This chapter did not present new results (with exception of the notion of a de-
fault restrictor in Section 9.6) but reviewed several issues of importance for the
procedural aspects of uni�cation grammar parsers.

Most important for the over-all subject of this book, viz., parsing of context-
free backbones of grammars, is Section 9.7. Some experiments with restricted
one-pass parsers have been carried out independently for a Japanese and an En-
glish uni�cation grammar. Both were equally encouraging. These experiments
were conducted by rewriting (by hand) the uni�cation grammar such that some
important features were taken into the context-free backbone. The framework that
is described here allows to specify which features are primary and which features
are secondary at the level of a parsing schema.

The trend in uni�cation grammars has been to encode more and more infor-

mation into the lexicon and less and less in the context-free rewrite rules. With
context-free backbones dwindling away, context-free parsing techniques seemed to
be less and less relevant for uni�cation grammars. The experiments of Nagata and
Maxwell and Kaplan have indicated that, while highly lexicalized grammars with
only a few productions are useful for speci�cation purposes, an e�cient implemen-

tation of a parser for such a grammar makes use of a larger context-free backbone
de�ned by primary features. The impact of this conclusion is threefold:

� an interesting research issue is how to determine an optimal set of primary
features;

� there is a need for uni�cation grammar parser generators that take a parsing
schema, grammar, and a restriction function as input and generate a two-
pass parser for the augmented context-free backbone;

� context-free parsing, which seemed to lose much of its relevance for natural
language parsing, is fully back on stage.

Chapter 10

Left-Corner chart parsing

In Chapters 10 and 11 we apply the notion of parsing schemata to de�ne Left-

Corner and Head-Corner chart parsers. These two chapters can be read as a

separate paper. From the theory that has been developed in Part II, we will use

the notation, and the general idea of what a parsing schema is, but not much of

the underlying theory.

Chart parsers can be seen as rather straightforward implementations of parsing

schemata.1 In Chapters 12{14 we will see other, more involved implementations

of some simple parsing schemata; here we will develop rather complicated parsing

schemata and do not worry a lot about implementation. We will briey recapitu-

late the general notion of a chart parser and then present schemata, rather than

parsing algorithms | leaving it to the reader to work out the appropriate details

necessary to construct a full-edged parser.

Chapters 10 and 11 are based on joint work with Rieks op den Akker. It was

Rieks who de�ned the LC and HC chart parsers in the lecture notes of Formele

Analyse van Natuurlijke Taal , 1991/92. The HC chart parser, in its initial form,

had 7 di�erent types of items. I was convinced that it should be possible to greatly

simplify things. I'm not quite sure, now, whether it has really become that much

simpler. But, working through a series of drafts, the results were established with

mathematical rigor and the presentation hopefully has been improved also. Parts

of it have been published in [Sikkel and op den Akker, 1992b, 1993], some more

details can be found in the technical report [Sikkel and op den Akker, 1992a]. New

in these chapters is the embedding in the general framework of parsing schemata.

The most substantial extensions to the cited material are the de�nition of a Head-

Corner parser for un�cation grammars in 11.8 and a detailed complexity analysis

of the simpli�ed context-free Head-Corner parser in 11.6.

1Historically one should see this the other way round, of course. Parsing schemata were

invented as a rather straightforward abstraction of chart parsers.

215

216 10. Left-Corner chart parsing

In Chapter 11 we will discuss Head-Corner parsing. The idea is to do the most

important words �rst, and �ll in the gaps later. The parser is rather complicated,

due to the non-sequential way in which a string is processed. The easiest way to

understand and formally de�ne a Head-Corner parser is to see it as a generalization

of a Left-Corner parser. This chapter, therefore, can be seen as an introduction

to Chapter 11. It should be remarked, however, that Left-Corner parsers are in-

teresting in their own right, not just as a preliminary to the more complicated

Head-Corner parsers. In Chapters 4 and 6 we have given an LC parsing schema

and shown that it is in fact a �ltered (i.e., more e�cient) version of the Earley

schema. A disadvantage was that the description of the LC schema was rather

more complicated, there is more variety in the types of deduction steps. The LC

schemata that will be de�ned here are in fact easier to read; we will make a some-

what more liberal use of items and introduce auxiliary items that do not �t exactly

in the theory of Part II (but the theory could be expanded straightforwardly).

The reader who thumbs through this chapter might easily be put o� by the

seemingly overwhelming amount of formulae. We would like to stress, however,

that most of these can be skipped without losing track of the discussion. The

emphasis is on the intuition behind the schemata. From the informal discussion

and examples, one should be able to get fairly good idea of what is going on. The

formal details, then, only serve to lay down precisely what has been stated already

informally. Most of the mathematics is covered in separate sections (10.3 and 10.5)

that can be skipped entirely by the less mathematically inclined reader.

A brief, informal introduction to chart parsing is given in Section 10.1. We

de�ne a Left-Corner parser in 10.2 and prove it to be correct in 10.3. The items

that are used by the Left-Corner parser can be simpli�ed, at the cost of slightly

more complicated deduction steps. This is dealt with in 10.4. In Section 10.5,

the relation between the two parsing schemata given here and the LC schema of

chapter 4 is studied, making use of the parsing schemata transformations de�ned

in Chapters 5 and 6. Conclusions are summarized in 10.6.

10.1 Chart parsers

The notion of a chart parser was introduced by Martin Kay [1980]. The presen-

tation of chart parsers that is given here is somewhat unconventional, because

we start from the notion of a parsing schema. For a conventional description of

chart parsing, see, e.g., Winograd [1983]. We will �rst recapitulate some impor-

tant concepts of part II and then introduce the Earley chart parser. As a running

example, we use the same sentence and grammar G1, again, that has been used

for illustration in previous chapters as well.

The notational conventions for context-free grammars that were introduced in

Section 3.1 apply throughout this chapter and the next one. We write A;B; : : : for

10.1 Chart parsers 217

nonterminal symbols; a; b; : : : for terminal symbols;X;Y; : : : for arbitrary symbols;

�; � : : : for arbitrary strings of symbols. Positions in the string a1 : : :an are denoted

by ; i; j; k; : : : and l; r.

A parsing system for some grammar G and string a1 : : :an is a triple P =

hI;H;Di with I a set of items, H an initial set of items (also called hypotheses)

and D a set of deduction steps that allow to derive new items from already known

items. The hypotheses in H encode the sentence that is to be parsed. For a

sentence a1 : : :an we take

H = f[a1; 0; 1]; : : : ; [an; n� 1; n]g: (10.1)

It is not relevant whether H is contained in item set I or not; for the sake of

brevity we may omit the hypotheses when we specify an item set I. Deduction

steps in D are of the form

�1; : : : ; �k ` �:

The items �1; : : : ; �k 2 H [I are called the antecedents and the item � 2 I is

called the consequent of a deduction step. If all antecedents of a deduction step

are recognized by a parser, then the consequent should also be recognized. The

set of valid items V(P) is the smallest subset of I that contains the consequents of

those deduction steps that have only hypotheses and valid items as antecedents.

A parsing system P is called instantiated if hypotheses for a particular sen-

tence are included. An uninstantiated parsing system only de�nes I and D for a

particular grammar G; H is a formal parameter that can be instantiated to a set

of hypotheses (10.1) for any given input string. A parsing schema is de�ned for a

class of grammars. For any particular given grammar a schema instantiates to an

uninstantiated parsing system.

In order to de�ne a parsing schema, one de�nes a parsing system for an arbi-

trary grammarG. As a typical example, consider the parsing schema Earley (that

was discussed more thoroughly in Example 4.32). For an arbitrary context-free

grammar G we have a system PEarley = hIEarley;H;DEarleyi with

IEarley = f[A!���; i; j] j A!�� 2 P; 0 � i � jg

DInit = f` [S!�; 0; 0]g;

DScan = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; i; j + 1]g;

DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;

DPred = f[A!��B�; i; j] ` [B!�; j; j]g;

DEarley = DInit [DScan [DCompl [DPred;

218 10. Left-Corner chart parsing

and H to be instantiated for any input string by (10.1). Note that the initial

deduction steps have no antecedent; these are valid for every sentence. The set of

valid items for a string a1 : : :an is

V(PEarley) = f[A!���; i; j] j �)�ai+1 : : :aj ^
S)�a1 : : :aiA for some g;

A parser is obtained from a parsing schema by adding data structures and

control structures. A chart parser, in its general form, is a most rudimentary kind

of parser.

A chart parser is equipped with two data structures, called chart and agenda.

Both data structures contain items that have been recognized by the parser. The

control structure, in its elementary form, is very simple. At each step an item |

the current item | is taken from the agenda and moved to the chart. For each

deduction step that has the current item as one of its antecedents, the chart is

searched for the other antecedents. If all antecedents of a deduction step are on the

chart, then the consequent of that step is added to the agenda (unless it is already

contained in the chart or agenda). The initial chart contains the hypotheses,

representing (the lexical categories of) the words of the sentence. The initial

agenda contains all items that can be deduced by an antecedentless deduction

step as the initialize above. The most general speci�cation of a chart parser is

presented in Figure 10.1.

program chart parser

begin

create initial chart and agenda;

while agenda is not empty

do delete (arbitrarily chosen) current item from agenda;

for each item that can be recognized by current

in combination with other items in chart

do if item is neither in chart nor in agenda

then add item to agenda fi

od od

end.

Figure 10.1: General schema for a chart parser.

In this general set-up, every deduction step can be successfully applied only

once. The antecedent that is the last one to be added to the chart will trigger

recognition of the consequent. It is evident that all valid items | and only those

10.1 Chart parsers 219

| are added to the chart in due course. If there is a �nite number of valid items2

then the agenda must become empty sometime and the chart parser �nishes.

The basic chart parser is nondeterministic, in the sense that a current item

is selected randomly from the agenda. A deterministic chart parser is obtained

by specifying how the next current item is to be selected. The agenda can be

structured as a stack (last in, �rst out), a queue (�rst in, �rst out), or a priority

queue (priority by a linear order on I). Sophistication in searching can be added

by providing additional structure to the chart. See, e.g., Nijholt [1990a] for various

standard ways to structure a chart.

As an example, consider the Earley chart parser. The initial chart contains

H as in (10.1), the initial agenda is the set f[S!�; 0; 0] j S! 2 Pg. For each

item that is taken from the agenda it must be checked whether a predict , scan or

complete step can be applied.

The canonical Earley chart parser, also called active chart parser , imposes

some ordering on the agenda (but the parser is still nondeterministic; di�erent

items may have equal priority). An item [A!���; i; j] has priority over an item

[A0!�0��0; i0; j0] if j < j0. The sentence is processed in left-to-right fashion: An

item [A!�a��; i; j+1] that has successfully scanned word j+1 will remain on the

agenda until all valid items with right position marker � j have been recognized

and moved to the chart. Because of this ordering, some of the searches for fellow

antecedents can be eliminated. If the current item is of the form [A!��B�; i; j],

one must predict items of the form [B!�; j; j]. A complete needs to be attempted

only if there is an empty production B!". There is no need to look for items

[B!�; j; k] with j < k because these cannot be in the chart yet. Items of the

form [A!��a�; i; j] and [A!��B�; i; j] are called active items and look forward

(to the right) for a match; items of the form [a; j� 1; j] and [A!��; i; j] are called

passive items and look backward (to the left) for a match.

Grammar G1 is de�ned by the productions

S!NP VP ;

NP!*det *n ;

VP!*v NP :

This grammar produces only one sentence: the lexical categories of our canonical

example sentence \the cat catches a mouse." It is on purpose that we choose a

grammar that allows only a single parse tree. The intuition behind the various

2We only consider relevant items. There are parsing schemata for which antecedentless de-
duction steps deduce items for every possible sentence position. As the set of deduction steps |
by de�nition | is independent of the sentence, such a schema yields an in�nite number of valid

initial items, in order to cope with sentences of arbitrary length. An item is relevant for a given
sentence if positions markers contained in the item refer to positions that do not extend beyond

the length of the sentence. Cf. De�nition 4.33.

220 10. Left-Corner chart parsing

chart parsers that will be introduced here can be explained by visualizing how

each parser steps through this single parse tree.

Any reasonable grammar will allow di�erent sentences and parse trees. A chart

parser, then, will walk through all parse trees for the sentence and all partial parse

trees for valid pre�xes of that sentence. But all these tree walks are interlaced;

from their general behaviour it is not at all obvious that the Earley, LC and HC

chart parsers actually perform tree walks. If some speci�c tree is singled out,

however, the items that relate only to that particular tree will follow some pattern

that is characteristic for the chart parser under discussion. Hence we take an

example in which only a single parse tree exists; in this way the salient features of

our di�erent chart parsers will stand out.

It is not a general feature of chart parsers that they recognize all items for a

given tree by making some walk through that tree. A CYK chart parser clearly

does not do that. That the Earley and LC parsers do perform a left-to-right walk

through a parse tree is a consequence of the underlying design decision that the

entire left context is taken into account for item recognition. In this way the work

for a sequential parser is minimized, but possibilities for parallel processing greatly

reduced.

The �nal chart of the Earley chart parser for grammar G and the example

sentence is shown in Figure 10.2. For each item it is indicated how it was added

to the chart. In Figure 10.3 a top-down left-to-right walk through the parse tree

is shown. We distinguish steps down from a nonterminal to a nonterminal, steps

up from a nonterminal to a nonterminal, and terminal steps from a nonterminal

down to a terminal and up again.

A terminal step comprises two steps, in fact. It is counted as a single step so

as to create a one-to-one correspondence between non-initial items on the chart

and steps in the tree walk. A terminal step from A down to a and back to A

corresponds to scanning an a in a production with left-hand side A; a step up

from B to A corresponds to a complete in which the dot is moved over a B in

a production with left-hand side A; a step down from A to B corresponds to

predicting a production with left-hand side B.

10.2 Left-Corner chart parsing

We will de�ne a chart parser that is based on a generalization of the Left-Corner

(LC) algorithm known from the literature.

Deterministic Left-Corner parsing3 has been introduced by Rosenkrantz and

3In a deterministic parser, not more than a single action can be undertaken in any circum-
stances. One could think of a chart parser where there is never more than a single item on the
agenda. A deterministic parser can parse a sentence in linear time, but in order to obtain deter-

minism, the class of grammars that can be used has to be severely restricted. This is, in general,
acceptable for programming languages but impossible for natural languages. A necessary (but

not su�cient) condition for determinism is that the grammar be unambiguous.

10.2 Left-Corner chart parsing 221

item motivation

(i) [*det ; 0; 1] initial chart

(ii) [*n ; 1; 2] initial chart

(iii) [*v ; 2; 3] initial chart

(iv) [*det ; 3; 4] initial chart

(v) [*n ; 4; 5] initial chart

(0) [S!�NP VP ; 0; 0] initial agenda

(1) [NP!�*det *n ; 0; 0] predict(0)

(2) [NP!*det�*n ; 0; 1] scan(1,i)

(3) [NP!*det*n�; 0; 2] scan(2,ii)

(4) [S!NP �VP ; 0; 2] compl(0,3)

(5) [VP!�*verb NP ; 2; 2] predict(4)

(6) [VP!*verb�NP ; 2; 3] scan(5,iii)

(7) [NP!�*det *n ; 3; 3] predict(6)

(8) [NP!*det�*n ; 3; 4] scan(7,iv)

(9) [NP!*det*n�; 3; 5] scan(8,v)

(10) [VP!*verb NP�; 2; 5] complete(6,9)

(11) [S!NP VP �; 0; 5] complete(4,10)

Figure 10.2: The �nal Earley chart

*det

�
�
�
�� �
�
�
���

2

*n

A
A
A
AA A
A
A
AAK 3

*v

�
�
�
�
�
�
�
� �
�
�
�
�
�
�
��

6

*det

�
�
�
�� �
�
�
���

8

*n

A
A
A
AA A
A
A
AAK 9

NP

�
�

�
�

��	

1

�
�
�
�
���

4

NP

HHHHHj7
HH

HH
HY 10

VP

HHHHHj5
HH

HH
HY 11

S

Figure 10.3: The Earley tree walk

222 10. Left-Corner chart parsing

Lewis [1970]. An extensive treatise on LC parsing is given by op den Akker [1988].

First ideas of a generalized LC parser,4 although not under that name, can be

traced back to Pratt [1975]. A left-corner style parser in Prolog was presented

by Matsumoto et al. [1983]. Their BUP parser overcomes the general problem in

De�nite Clause Grammars that left-recursion cannot be handled. BUP is limited

to acyclic, "-free grammars. As usual in Prolog implementations, ambiguities are

handled by backtracking. A di�erent way to handle ambiguities is by means of

a graph-structured stack.5 A left-corner parser based on such a data structure is

described by Nederhof [1993]. Our approach to LC parsing is chart-based. It is in

fact quite similar to the directed bottom-up parser of Kay [1980].

We describe a (generalized) Left-Corner parsing algorithm in the form of a chart

parser. The line of presentation is somewhat di�erent from Chapter 4, where a

parsing schema LC was derived from the Earley schema. We will �rst concen-

trate on the intuition and describe the parser from a \left-corner" perspective. A

derivation of this parser from the schemata in Part II is postponed to 10.5.

A Left-Corner parser, like an Earley parser, proceeds through the sentence from

left to right. The type of items and the motivation behind the steps is di�erent,

however. An important di�erence is in the way in which top-down predictions

are used to guide the bottom-up recognition. Predict steps in Earley's algorithm

are replaced by goals that the LC parser tries to satisfy in a purely bottom-up

manner. Bottom-up recognition is guided towards the right goal by means of the

left-corner relation.

De�nition 10.1 (transitive and reexive left-corner relation)

The left corner is the leftmost symbol in the right-hand side of a production.

A!X� has left corner X; an empty production A!" has left corner ".

The relation >` on N � (V [f"g) is de�ned by

A >` U if there is a production p = A!� 2 P with U the left corner of p:

The transitive and reexive closure of >` is denoted >�

`
. 2

For our trivial example grammar the transitive left-corner relation >�

`
comprises

S >�

`
S; S >�

`
NP ; S >�

`
*det ;

4The term \Generalized LC" has been introduced by Demers [1977] for a rather di�erent
concept. He generalized the notion of Left Corner, deriving a framework that describes a class

of parsers and associated grammars ranging from LL(k) via LC(k) to LR(k). In the context
of Natural Language parsing, the more obvious meaning of generalized LC parsing is that the
grammar need not be LC(k) for any k. Hence, the parser is nondeterministic; for a chart parser
this does not cause problems.
Note that the semantic ambiguity of the noun phrase \Generalized LC parsing" duly reects the

syntactic ambiguity: we are concernedwith [Generalized [Left-Corner Parsing]], whereas Demers
discussed [[Generalized Left-Corner] parsing].

5Cf. Chapter 12 where a graph-structured stack for a generalized LR parser is discussed.

10.2 Left-Corner chart parsing 223

NP >�

`
NP ; NP >�

`
*det ; VP >�

`
VP ; VP >�

`
*v :

The LC chart parser uses the following kinds of items:

[i; A] : predict items or goals,

[A;B!���; i; j]: left-corner (LC) items,

[a; j � 1; j] : terminal items as in the Earley chart parser.

Recognition of items should be interpreted as follows.

� A predict item [i; A] will be recognized if preceding items indicate that a

constituent A should be looked for, starting at position i.

� An LC item [A;B!���; i; j] will be recognized if [i; A] is set as a goal, A

could start with a B (i.e. A >�

`
B) and �)�ai+1 : : : aj has been established.

In other words, an LC item incorporates a pre�x for a given goal.

Parsing our sentence starts with a goal [0; S]. The �rst word is [*det ; 0; 1]. It is

known by the parser that *det is a transitive left-corner of S. We can \move up"

one step from *det in the tree walk if we �nd a symbol A such that S >�

`
A and

A >` *det . In our case, this symbol is NP and the deduction step that applies

here is

[0; S]; [*det ; 0; 1] ` [S;NP!*det�*n ; 0; 1]:

The scan that includes the noun in the recognized part of the NP is similar to

Earley's:

[S;NP!*det �*n ; 0; 1]; [n; 1; 2] ` [S;NP!*det *n�; 0; 2]:

Having recognized a complete NP , we can move up again to a left-hand side symbol

that is nearer to S.

[S;NP!*det *n�; 0; 2] ` [S;S!NP�VP ; 0; 2]:

In general it is not necessary that both S symbols refer to the same node in the

parse tree. If the grammar would have a production S!S PP , we might step up

later from the left-hand side S to a mother node also labelled S.

We have now deduced an item with the dot preceding a nonterminal symbol.

We carry out a predict step that is not so much di�erent from Earley's:

[S;S!NP�VP ; 0; 2] ` [2;VP]:

The LC parser continues in similar fashion. The �nal chart is shown in �gure 10.4

(the initial chart has been deleted for the sake of brevity). In the motivation

column the names and antecedents of the deduction steps are listed. For left-corner

224 10. Left-Corner chart parsing

item motivation

(0) [0; S] initial agenda

(1) [S;NP!*det�*n; 0; 1] left-corner(a) (0,i)

(2) [S;NP!*det*n�; 0; 2] scan(1,ii)

(3) [S;S!NP�VP ; 0; 2] left-corner(A) (2)

(4) [2;VP] predict(3)

(5) [VP;VP!*v�NP ; 2; 3] left-corner(a) (4,iii)

(6) [3;NP] predict(5)

(7) [NP;NP!*det�*n ; 3; 4] left-corner(a) (6,iv)

(8) [NP;NP!*det*n�; 3; 5] scan(7,v)

(9) [VP;VP!*v NP �; 2; 5] complete(5,8)

(10) [S;S!NP VP�; 0; 5] complete(3,9)

Figure 10.4: A completed LC chart (excluding terminal items)

steps we distinguish between terminal and nonterminal left corners (generically

denoted by letters a and A).

The corresponding left-corner tree walk is shown in Figure 10.5. Like the Earley

tree walk, the parse tree is visited in top-down left-to-right order. The main

di�erence is that steps down to left corners do not cause the recognition of an item;

these steps are encoded in the >�

`
relation and do not need to be taken explicitly.

Steps down to nonterminal daughters that are not a left corner correspond to

setting a new goal. Terminal daughters are scanned in a single step. These steps

are in fact identical to the terminal steps in the Earley tree walk. The lay-out

in �gure 10.5 has been adapted, however, to underline the bottom-up direction of

item recognition. The idea is that

� top-down arrows correspond to setting new goals,

� bottom-up arrows correspond to recognizing LC items.

We will de�ne a parsing schema6 that underlies the LC chart parser. The

parsing schema is called pLC for predictive LC, because the identi�er LC was

already used in Chapter 4 for Example 4.36.

Schema 10.2 (pLC)

We de�ne a parsing system PpLC for an arbitrary context-free grammarG 2 CFG.
The domain IpLC is given by

6Parsing schemata is this chapter are more liberal than the parsing schemata de�ned in 4.

Here we de�ne types of items ad hoc, such that these suit our purposes, while in Chapter 4 items
were de�ned as a subset of a partition of the set of trees for a given grammar In 10.5 we will

argue that our liberal approach here is in fact an extension of the formal theory of Part II.

10.2 Left-Corner chart parsing 225

*det

........... �
�
�
���

1

*n

........... A
A
A
AAK 2

*v

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. �
�
�
�
�
�
�
��

5

*det

........... �
�
�
���

7

*n

........... A
A
A
AAK 8

NP

................ �
�
�
�
���

3

NP

HHHHHj6
HH

HH
HY 9

VP

HHHHHj4
HH

HH
HY 10

S

Figure 10.5: The left-corner tree walk

IPred = f[i; A] j A 2 N ^ i � 0g;

ILC(i) = f[A;B!X���; i; j] j A 2 N ^ A >�

`
B

^ B!X�� 2 P ^ 0 � i � jg;

ILC(ii) = f[A;B!�; j; j] j A 2 N ^ A >�

`
B ^ B!" 2 P ^ j � 0g;

IpLC = IPred [ILC(i) [ILC(ii):

It is important to remark that LC items [A;B!���; i; j] exist only for A and B

such that A >�

`
B. Deduction steps, by de�nition, can only deduce items in I.

Hence, when we specify the various kinds of deduction steps, we need not state

explicitly that items [A;B!���; i; j] may occur as a consequent only if A >�

`
B.

This is enforced implicitly by the de�nition of the domain of items.

For the set of deduction steps, we de�ne subsets for initialize, scan and com-

plete steps similar to the Earley schema. Predict steps set new goals as explained

above. The left-corner steps come in three varieties, for terminal, nonterminal and

empty left corners, generically denoted by a, A and ". The set D is de�ned by

DInit = f ` [0; S]g;

DLC(a) = f[i; C]; [a; i; i+ 1] ` [C;B!a��; i; i + 1]g;

DLC(A) = f[C;A!�; i; j] ` [C;B!A��; i; j]g;

DLC(") = f[i; C] ` [C;B!�; i; i]g;

DPred = f[C;B!��A�; i; j] ` [j; A]g;

226 10. Left-Corner chart parsing

DScan = f[C;B!��a�; i; j]; [a; j; j + 1] ` [C;B!�a��; i; j + 1]g;

DCompl = f[C;B!��A�; i; j]; [A;A!�; j; k] ` [C;B!�A��; i; k]g;

DpLC = DInit [DLC(a) [DLC(A) [DLC(") [DPred [DScan [DCompl:

With the set of hypotheses H as a formal parameter for the string to be parsed,

we have fully speci�ed the parsing system PpLC = hIpLC;H;DpLCi. 2

A chart parser is obtained from pLC as follows.

� The initial chart comprises the hypotheses for the given sentence;

� the initial agenda contains the consequent of the (only) initialize deduction

step.

10.3 Correctness of the LC chart parser

The chart parser based on pLC is correct if, for an arbitrary grammar G and any

string a1 : : : an, it holds that

� [S;S!�; 0; n] 2 V(PpLC) if and only if S))� a1 : : : an.

(cf. De�nition 4.22).

Unlike for the Earley chart parser, however, it not trivial to determine the set

of valid items V(PpLC). We will proceed as follows. First a set of viable items is

postulated, i.e., items that ought to be recognized by the parser. Subsequently,

we will prove that V(PpLC) contains all viable items and no other items.

De�nition 10.3 ((pLC-)viable items)

We de�ne pLC-viability (or shortly viability) for each type of item.

� Let
 denote the set of viable predict items.
 is the smallest set satisfying

the following conditions:

� [0; S] 2
;

� if there are A;B;C;X; �; �; i; j such that

(i) [i; A] 2
,

(ii) A >�

`
B,

(iii) B)X�C�,

(iv) X�)�ai+1 : : : aj

then [j; C] 2
.

� A left-corner item [A;B!���; i; j] is viable if

10.3 Correctness of the LC chart parser 227

(i) [i; A] is viable,

(ii) A >�

`
B,

(iii) B)��, and

(iv) �)�ai+1 : : :aj .

� A terminal item [a; j � 1; j] is viable if a = aj. 2

Note that, by de�nition, items [A;B!���; i; j] come in two variants: either � 6= "

or � = � = ". Both cases are covered in the above de�nition; it should be clear

that I does not contain items [A;B!��; i; j] with � 6= ".

It is possible to give a direct characterization of viable predict items that is

equivalent to the inductive speci�cation in the above de�nition.

Lemma 10.4

Let
 be as in De�nition 10.3 and
0 de�ned by

0 = f[0; S]g [f[i; A] j 9 k;B;X; �; �; : S)�a1 : : : akB ^
B)X�A� ^
X�)�ak+1 : : :ai g:

Then
0 =
.

Proof.

The proof makes use of the \walk length function" w that will be de�ned in the

proof of Lemma 10.7. Therefore it is postponed to page 231. 2

From De�nition 10.3 it follows immediately how the grammatical correctness

of a string can be expressed by means of viable LC items.

Corollary 10.5

An item [S;S!�; 0; n] is pLC-viable for a string a1 : : :an if and only if

S))�a1 : : :an. 2

In order to establish the correctness of the LC parser it remains to be proven that

viability and validity are equivalent properties in pLC.

Lemma 10.6

Any item contained in V(PpLC) is is pLC-viable
(i.e., the LC chart parser is sound).

Proof.

This follows straightforwardly from the following observations:

� all initial items are viable;

228 10. Left-Corner chart parsing

� for each deduction step in D it holds that viability of the consequent is

implied by the viability of the antecedents. 2

Lemma 10.7

All pLC-viable items are contained in V(PpLC)
(i.e., the LC chart parser is complete).

Proof.

We will �rst explain the general idea, which is quite simple, before we spell out

the somewhat cumbersome details.

A generic method to prove the completeness of a parsing schema (and hence

a chart parser) is the following. To each viable item � a number f(�) is assigned,

that has some relation to the minimum number of steps needed for recognizing �.

If we are able to establish for each viable item �

there is a deduction step �1; : : : ; �k ` � such that �1; : : : �k are viable and,

moreover,

f(�) > f(�i) for 1 � i � k; (10.2)

then it follows by induction on the value of f that all viable items are valid. The

key problem is to pick the right function f .

For our LC chart parser we de�ne a function w that corresponds to the (length

of the top-down left-to-right) walk through a (partial) parse tree that is needed to

derive the item. For the tree walk we count all edge traversals; the dotted lines in

Figure 10.5 as well as the arrows. The de�nition of w makes use of the following

parameters:

� �: the size of the tree walk for the relevant predict item;

� �: the number of edges traversed in top-down direction by the >�

`
relation;

� �: length of a derivation X�)�ai+1 : : :aj for items [A;B!X���; i; j].

Furthermore, we have to take into account that in general di�erent (partial) parse

trees may exist that account for the same item. Hence we have to take the mini-

mum number of steps in such a walk in an arbitrary tree.

The partial function w : IpLC ! IN is de�ned by

� w([0; S]) = 0,

� w([j; C]) = minf�+(�+1)+2� j 9A;B;X; �; �; i; j :
[A;B!X��C�; i; j] is viable ^
� = w([i; A]) ^
A >�

`
B ^

X�)�ai+1 : : : aj g

10.3 Correctness of the LC chart parser 229

� w([A;B!���; i; j]) = minf� + � + 2� j � = w([i; A]) ^
A >�

`
B ^

�)�ai+1 : : : aj g

� w([j; C]) and w([A;B!���; i; j] are unde�ned if the conditions in the pre-

ceding two cases cannot be satis�ed (i.e., the minimum is taken over an

empty set).

We count 2�, as each edge of the derivation tree is traversed twice. For predict

items [j; C] we count � + 1 because � edges are skipped by A >�

`
B and an

additional edge is moved down from B to C.

In order to �nish the proof we have to establish

(i) w(�) is de�ned for every viable item �;

(ii) condition (10.2) holds for each viable �.

As to the �rst point, it is easy to verify that for each viable item there are at

least one �, �, � for which the conditions are ful�lled, hence, (by induction on the

de�nition of viability) w is de�ned for all viable items.

Thus it remains to be shown for each viable item � that there is a deduction step

�1; : : : ; �k ` � such that all �i are viable and have a lower w-value than �. We will

spell it out as an exemplary case; in subsequent proofs this part will be omitted.

We distinguish between

� predict-items (a);

� di�erent types of LC items:

� LC items with the dot in leftmost position (b);

� LC with a single symbol preceding the dot:

� a terminal symbol preceding the dot (c),

� a nonterminal symbol preceding the dot (d);

� LC items with two or more symbols preceding the dot:

� a terminal symbol immediately preceding the dot (e),

� a nonterminal symbol immediately preceding the dot (f).

For viable items of each type we will give a deduction step with viable antecedents

and show that the condition on w-values is satis�ed.

(a) Let � = [j; C].

From the viability of � we obtain that there are A;B;X; �; �; i; �; �; � such

that

(i) [i; A] is viable,

230 10. Left-Corner chart parsing

(ii) s([i; A]) = �,

(iii) A >�

`
B,

(iv) B)X�C�,

(v) X�)�ai+1 : : :aj ,

(vi) w(�) = � + (�+ 1) + 2�.

From (i){(v) it follows that � = [A;B!X��C�] is viable and � ` �.

Moreover, w(�) = � + �+ 2� = w(�)� 1.

(b) Let � = [A;B!�; i; i] be viable.

� can only be recognized by [i; A] ` �, where A >�

`
B.

Moreover, w(�) = w([i; A]) + �+ 2 with minimal � such that A >�

`
B.

(c) Let � = [A;B!a��; i; i+ 1] be viable.

� can only be recognized by [i; A] ` �, where A >�

`
a.

Moreover, w(�) = w([i; A]) + �+ 2 with minimal � such that A >�

`
a.

(d) Let � = [A;B!C��; i; j] be viable.

There must be some viable � = [A;C!�; i; j] such that [i; A]; � ` �.

Let A >�

`
B and C)�ai+1 : : : aj for minimal � and �,

then A >�+1
`

C and)��1ai+1 : : : aj.

Hence, w(�) = w([i; A]) + �+ 2�) > w([i; A]).

Moreover, w(�) = w[i; A] + (�+ 1) + 2(�� 1) = w(�) � 1.

(e) Let � = [A;B!X�a��; i; j] be viable.

Then � = [A;B!X��a�; i; j � 1] is viable and �; [j � 1; a; j] ` �.

Clearly, w(�) = w(�) � 2.

(f) Let � = [A;B!X�C��; i; k] be viable.

Then it must hold that

(i) [i; A] is viable.

Furthermore, there are j; �; p; q such that

(ii) A >�

`
B ,

(iii) X�)pai+1 : : :aj ,

(iv) C))q�1aj+1 : : :ak,

(v) w(�) = w([i; A]) + �+ 2(p+ q).

From (i){(iii) it follows that � = [A;B!X��C�; i; j] is viable and [j; C] is

viable.

With (iv) we obtain that � = [C;C!�; j; k] is viable.

Furthermore, �; � ` � 2 D and if follows that w(�) = w(�)� q < w(�);

w(�) = w([j; C]) + 2(q � 1) � w([i; A]) + (� + 1) + 2(p+ q � 1) = w(�) � 1:

10.4 An LC chart parser with simpli�ed items 231

Hence we may conclude, by simultaneous induction on the w-value for all types of

items, that pLC-viable items are contained in V(PpLC). 2

Theorem 10.8 (correctness of the pLC chart parser)

For any grammar G 2 CFG and string a1 : : : an it holds that

[S;S!�; 0; n] 2 V(PpLC) if and only if S))�a1 : : :an.

Proof: directly from Lemmata 10.6 and 10.7 and Corollary 10.5 2

It has been left to prove that the equality
 =
0 holds for
;
0 as de�ned in

De�nition 10.3 and Lemma 10.4. In that proof we make use of the tree walk

function that has been de�ned in the proof of Lemma 10.7 (but, in order to avoid

circularity, none of the results established after Lemma 10.4 should be used).

Proof of Lemma 10.4.

(i)
 �
0 is proven by induction on on w([i; A]).

Let [j; C] 2
 be viable and predicted by [A;B!X��C�; i; j]. Then from

w([i; A]) < w([j; C]) we may assume [i; A] 2
0 and it follows trivially that

[j; C] 2
0.

(ii)
 �
0 is obtained as follows.

Let [i; A] 2
0, S)�a1 : : : ahB, B)X�A�, X�)�ak+1 : : : ai.

In the derivation S)�a1 : : :ahB, we must identify the most direct ancestor

of B (or possibly B itself) which is not a left corner. Let's call this D. If B

is not a left corner, then D is B. Otherwise, B has been produced by some

E!�0B�0. If �0 6= ", then D = E, otherwise E will have been produced by

some F!�00E�00, and so on.

D has been produced by some C!Y �D0, hence there is a derivation

S)��0C00)�0Y �D000)�a1 : : :ahD
000)�a1 : : : ahB:

Clearly, [h;D] 2
, D >�

`
B, B)X�A�, X�)�ah+1 : : :ai, hence [i; A] 2
.

2

10.4 An LC chart parser with simpli�ed items

An LC item [A;B!���; i; j] can be seen as consisting of a predicted part [A; i] and a

recognized part [B!���; i; j]. The LC chart parser can be simpli�ed somewhat by

disconnecting these two parts. The predict parts correspond to predict items that

are contained on the chart already; the recognized parts are in fact conventional

Earley items.

232 10. Left-Corner chart parsing

The reason for not introducing this simpli�cation straight away is the relation

between the LC chart parser and the HC chart parser that will be discussed in

the next chapter. In the HC case there are good reasons for keeping the predicted

and recognized parts within a single item, when uni�cation grammars rather than

context-free grammars are used.

A simpli�ed parsing schema for the LC chart parser, sLC, is derived from the

pLC schema as follows.

� LC items are replaced by Earley items,

� The deduction steps are extended, where necessary, with extra antecedents

and conditions.

Schema 10.9 (sLC)

We de�ne a parsing system PsLC for an arbitrary context-free grammar G 2 CFG.
The domain IsLC en deduction steps DsLC are given by

IPred = f[i; A] j A 2 N ^ i � 0g;

ILC(i) = f[B!X���; i; j] j B!X�� 2 P ^ 0 � i � jg;

ILC(ii) = f[B!�; j; j] j B!" 2 P ^ j � 0g;

IsLC = IPred [ILC(i) [ILC(ii);

DInit = f ` [0; S]g;

DLC(a) = f[i; C]; [a; i; i+ 1] ` [B!a��; i; i + 1] j C >�

`
Bg;

DLC(A) = f[i; C]; [A!�; i; j] ` [B!A��; i; j] j C >�

`
Bg;

DLC(") = f[i; C] ` [B!�; i; i] j C >�

`
Bg;

DPred = f[B!��C�; i; j] ` [j; C]g;

DScan = f[B!��a�; i; j]; [a; j; j + 1] ` [B!�a��; i; j + 1]g;

DCompl = f[B!��A�; i; j]; [A!�; j; k] ` [B!�A��; i; k]g;

DsLC = DInit [DLC(a) [DLC(A) [DLC(") [DPred [DScan [DCompl:

With the set of hypotheses H to be instantiated by (10.1) for any string, we have

fully speci�ed a parsing system PsLC = hIsLC;H;DsLCi for an arbitrary grammar

G 2 CFG. 2

The set of valid items V(PsLC) for any sentence a1 : : : an is given by

� [a; j � 1; j] is valid i� a = aj

10.5 The relation between pLC, sLC, and LC 233

� [i; A] is valid if

� [i; A] = [0; S], or

� if there are k;B;X; �; �; such that

S)�a1 : : :akB, B)X�A�, and X�)�ak+1 : : : ai:

(cf. Lemma 10.4).

� An Earley item [A!���; i; j] is valid if there is a such that

S)�a1 : : :aiA and X�)�ai+1 : : :aj .

Note, again, that this applies only to items in IsLC, i.e., � 6= " or � = � = ".

The correctness of the above characterization of V(PsLC) follows straightforwardly
fromTheorem 10.8 and the relation between sLC and pLC that will be established

in the next section.

10.5 The relation between pLC, sLC, and LC

We will now compare the parsing schemata pLC and sLC with LC as de�ned

in Example 4.36 and establish relations between these schemata as de�ned in

Chapters 5 and 6.

We have to di�erentiate between the schemata de�ned in Chapter 4, called basic

schemata henceforth, and the more liberal parsing schemata that we introduced in

this chapter. Items in the domain of a basic parsing schema, by de�nition, are the

equivalence classes of a particular relation on the set of trees. Hence, the domain

of a basic parsing schema is a subset of a partition of the set of trees.7 This is not

the case for the domains IpLC and IsLC.
Let us look at sLC �rst. The Earley items in sLC are identical to the items of

LC as de�ned in Example 4.36 (with one exception: the special items [S!�; 0; 0]

are not used in sLC). The predict items, on the other hand should be regarded as

equivalence classes of LC items. The meaning of recognizing a predict item [i; A] is

to denote that some Earley item [D!�A�; h; i] has been recognized. By making

the item set more sophisticated we have decreased the number of deduction steps,

notwithstanding the fact that we have increased the number of valid items.

One could argue that the sLC chart parser is an implementation of the un-

derlying basic parsing schema LC. By adding predict items to the chart parser

we have created a data structure that stores the relevant properties of items to

be used as possible antecedents. Hence, the sLC chart parser is an optimization

of a chart parser directly based on LC, without this extra data structure. The

tree walk of a chart parser based on LC is shown in Figure 10.6. Less items are

recognized, but the higher search costs are not displayed in the �gure.

7Note, however, that a schema may also contain items that denote the empty set; cf. Section

4.5

234 10. Left-Corner chart parsing

*d

........... �
�
�
���

1

*n

........... A
A
A
AAK 2

*v

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. �
�
�
�
�
�
�
��

4

*d

........... �
�
�
���

5

*n

........... A
A
A
AAK 6

NP

................ �
�
�
�
���

3

NP

.H
HH

HHY 7
VP

.
HH

HH
HY 8

S

Figure 10.6: A tree walk according to the schema LC

In a similar way, the pLC chart parser can be seen as an extension of the sLC

chart parser. LC items are annotated with the predict item that cause their recog-

nition. This is a useful feature when the predicted symbol carries attributes that

might rule out certain applications of left-corner deduction steps. For context-free

parsing it only increases the number of items. Hence this is not an optimization.

We have introduced pLC primarily as a step towards the de�nition of the schema

pHC in Chapter 11.

We can apply the relations between parsing schemata that were de�ned in Part

II. The de�nitions of parsing schemata in this chapter are based on intuition and

not formally derived from the theory in Part II. As a result, it roughly holds that

sLC is a step re�nement of LC and it roughly holds that pLC is a step re�nement

of sLC. \Roughly" means, here, that a few inessential details have to be swept

under the rug. In order to get things �t exactly, we will de�ne two auxiliary

parsing schemata LC' and pLC' that di�er from LC and pLC only in minute

(and for practical purposes irrelevant) details.

The schema LC' di�ers from LC in the following respect:

� All items of the form [S!�; 0; 0] in ILC are collapsed into a single item

[0; S] in ILC'; antecedents in deduction steps are adapted accordingly.

Then the (rather trivial) item contraction relation LC
ic
=) LC' holds.

The schema pLC' di�ers from pLC in the following respect:

10.6 Conclusion 235

� left-corner(A) deduction steps [C;A!�; i; j] ` [C;B!A��; i; j] in DLC are

replaced in DLC' by left-corner(A) deduction steps

[i; C]; [C;A!�; i; j] ` [C;B!A��; i; j]:

Then the relation pLC
df
=) pLC' holds, as a dynamic �lter may add antecedents

to deduction steps. This is a particularly degenerate case of dynamic �lter (and not

worth to coin a special name for) as the added antecedents don't �lter anything. An

item [C;A!�; i; j] cannot be recognized without having recognized [i; C] before.

Having settled these details, we can now state the desired result.

Theorem 10.10 (relations between LC, sLC and pLC)

The following step re�nement and item re�nement relations hold:

LC'
sr
=) sLC

ir
=) pLC'.

Proof.

It is clear from the de�nitions that ILC' � IsLC and it follows straightforwardly

that `�LC' � `�sLC, hence LC'
sr
�! sLC.

The item contraction function f : IpLC'!IsLC is de�ned by

f([A;B!���; i; j]) = [B!���; i; j]:

It follows immediately that IsLC = f(IpLC') and �sLC = f(�pLC'),

hence sLC
ir
=) pLC'. 2

We recall from Corollary 5.8 that item contraction (the inverse of item re�nement)

is correctness preserving.8 Hence, as we have proven pLC correct, the correctness

of sLC follows.

Informally we write � for the trivial relations that denote irrelevant syntactic

di�erences between parsing schemata. Hence, informally, the results of this section

can be summarized as

LC � LC'
sr
=) sLC

ir
=) pLC' � pLC .

10.6 Conclusion

The LC parsing is well-known, both in the Computer Science and Computational

Linguistics literature (cf. Rosenkrantz and Lewis [1970], Pratt [1975], Matsumoto

[1983], op den Akker [1988], Resnik [1992], and Nederhof [1993]) but it is not very

common to describe an LC parser as a chart parser. By doing so, the very close

8Note, however, that because of the more sophisticated items sLC and pLC do not belong

to the class of semiregular parsing schemata to which Corollary 5.8 applies. The extension with
predict items and LC items is inessential, however, and a similar result for these parsing schemata

can be derived from De�nition 5.5.

236 10. Left-Corner chart parsing

relations between LC parsing and Earley chart parsing have been made explicit

in a simple way (informally in Section 4.6 and more formally in Example 5.22).

In this chapter we have given a somewhat more convenient description of an LC

chart parser, making use of additional predict items.

A chart parser is not necessarily the most e�cient implementation of the LC

algorithm, Nederhof [1993] has de�ned a generalized LC parser based on a graph-

structured stack; it is to be expected, therefore, that Nederhof's algorithm is

more e�cient (just as Tomita's generalized LR algorithm is more e�cient that the

conventional Earley chart parser). The advantage of describing the LC parser as

a chart parser | other than a nice application of the framework developed in part

II | is that it is a more general description. In the next chapter we will introduce

parsing schemata pHC and sHC for Head-Corner parsers that are straightforward

extensions of the schemata pLC and sLC.

Chapter 11

Head-Corner chart parsing

\Our Latin teachers were apparently right", Martin Kay [1989] remarks, \You
should start [parsing] with the main verb. This will tell you what kinds of subjects
and objects to look for and what cases they will be in. When you come to look
for these, you should also start by trying to �nd the main word, because this will
tell you most about what else to look for."

In this chapter we introduce and analyse a few parsing schemata for Head-
Corner (HC) parsers, that implement the general idea of head-driven parsing as
sketched by Kay in his usual lucid style. When it comes down to de�ning the details
with mathematical rigor, it is indeed a lot of detail we get involved with. Looking
at the important words �rst means jumping up and down the sentence. Keeping

track of where you have been and where the next interesting word might be located
requires a more sophisticated administration than simply working through the
sentence from left to right. In order to understand what is going on, it is of great
help to have grasped the ideas behind the LC parsers presented in Chapter 10. HC
parsing can be seen as a generalization of LC parsing | it is just a di�erent corner
we start with, all the rest is similar (but involves more bookkeeping). As in the
previous chapter, the mathematical details of correctness proofs and complexity
analysis are put into separate sections. These can be skipped without loosing the
thread of the discussion.

Before we start to de�ne Head-Corner parsers, we need to have some notion of
a head. For this purpose we introduce context-free head grammars in Section 11.1.
In 11.2 we introduce a predictive HC chart parsing schema pHC as a generalization
of pLC. The correctness of pHC is proven in 11.3. This schema is the basis for
two further developments.

237

238 11. Head-Corner chart parsing

For Head-Corner parsing of context-free grammars, we develop a simpli�ed
schema sHC in 11.4 (and prove this to be correct in 11.5). A detailed complexity
analysis in 11.6 will show that, despite the increased sophistication in administra-
tive details, the schema can be implemented with a worst-case complexity that is
as good as that of Graham, Harrison, and Ruzzo's variant of the Earley parser
| the optimal worst-case complexity for practical context-free parsers known to-
day. The relation between pHC, sHC and the parsing schemata of Part II is
established in 11.7.

In Section 11.8 we extend the schema pHC to parsing of uni�cation grammars,
using the notation that was developed (and motivated) in Chapter 8. Related
approaches are briey discussed in 11.9, conclusions follow in 11.10.

Like Chapter 10, this chapter is based on cooperative work with Rieks op den
Akker ([Sikkel and op den Akker, 1992ab, 1993]. Section 11.8 is based on a Head-
Corner parser for uni�cation grammars that has been de�ned and implemented
by Margriet Verlinden [1993]. The detailed complexity analysis in 11.6, the em-
bedding of the HC parsers in the parsing schemata framework in 11.7, and the
schema for a HC parser for uni�cation grammars in 11.8 have not appeared in
print before.

11.1 Context-free Head Grammars

In order to start parsing a constituent from its head, we have to formally introduce
the notion of a head. For context-free grammars this is done as follows.

De�nition 11.1 (heads in context-free grammars)
A context-free head grammar is a 5-tuple G = (N;�; P; S; h), with h a function
that assigns a natural number to each production in P .
Let jpj denote the length of the right-hand side of p. Then h is constrained to the
following values:

� h(p) = 0 for jpj = 0,

� 1 � h(p) � jpj for jpj > 0.

The head of a production p is the h(p)-th symbol of the right-hand side; empty
productions have head ". 2

In a much more practical notation for head grammars, we do not de�ne the
function h explicitly, but simply underline the head of each production. The head
grammar G for our running example is given by

S ! NP VP ;

VP ! *v NP ;

NP ! *det *n :

11.2 A predictive Head-Corner chart parser 239

While there is a linguistic motivation for the notion of a head in natural lan-
guage grammars (we come back to this in Section 11.8), this is not the case for
arbitrary context-free grammars. One could argue that heads are not part of the
grammar but a function that is attributed to the grammar by the designer of the
parser . Given a context-free grammar, one could ask the question which allocation
of heads is optimal for the (worst-case or average-case) e�ciency of a parser. We
will not address such questions here, and take the allocation of heads as given. A
special case that must be mentioned, however, is the following:

r(p) = 1 for all nonempty productions p,

i.e., the head of each production is the left corner. In that case the HC and LC
chart parser will be identical.1

11.2 A predictive Head-Corner chart parser

A Left-Corner parser proceeds through sentence from left to right; a Head-Corner
(HC) parser starts with the more important words, leaving the less important
words to be processed later. How this works in detail is the subject of this section.

For the LC chart parser that was introduced in 10.2 there is no need to state
that it is predictive. LC parser have that property by de�nition. The bottom-
up parsing schema buLC as de�ned in Chapter 4 is in fact a notational variant
of bottom-up Earley and has been introduced only as an auxiliary construct for
the derivation of the schema LC. For head-corner parsers the inclusion of top-
down prediction is not self-evident; it is the combination of HC chart parsing and
top-down prediction that is the innovative aspect of the parser presented here.
At the same conference where Kay made his general statement on head-driven
parsing that was quoted in the introduction to this chapter, Satta and Stock
[1989] presented a head-driven chart parser that works purely bottom-up. The

Head-Corner parser to be presented here can roughly be classi�ed as an extension
of the Satta and Stock parser with top-down prediction as proposed by Kay.

We introduce the HC chart parser in the same way as the LC chart parser in
Section 10.2.

De�nition 11.2 (transitive and reexive head-corner relation)
The relation >h on N � (V [f"g) is de�ned by

A >h U if there is a production p = A!� 2 P with U the head of p:

The transitive and reexive closure of >h is denoted >�

h. 2

1There are some notational di�erences, of course, caused by the more general nature of the
HC parser. Furthermore, there is a tiny di�erence in implementation (pointed out to me by

Margriet Verlinden): the HC parsing schemata allow the parser to leave gaps in carrying out
head-corner steps (even though this does not make sense when all heads are leftmost), whereas

the LC parsing schemata do not allow such gaps.

240 11. Head-Corner chart parsing

For our trivial example grammar, the relation >�

h comprises

S>�

hS; S>�

hVP ; S>�

h*v ;

VP>�

hVP ; VP>�

h*v ; NP>�

hNP ; NP>�

h*n :

If the relation A>�

ha holds between a nonterminal A and a terminal a, we call a
a lexical head of A. For grammar G, lexical heads of a sentence must be of the
category *v .

The HC chart parser uses the following kinds of items:

[l; r; A] : predict items or goals,

[l; r; A;B!����; i; j]: head-corner (HC) items,

[a; j � 1; j] : terminal items as in the Earley chart parser.

The items of the HC chart parser are more complex than the items of the LC
chart parser, due to the fact that constituents no longer are recognized from left
to right. Recognition of items should be interpreted as follows.

� A predict item [l; r; A] is recognized if a constituent A must be looked for,
located somewhere between l and r. Such a constituent should either stretch
from l up to some j (if we are working to the right from the head of some
production) or from r down to some j (if we are working to the left from the
head of some production), with l � j � r. But, as we start parsing A from a
lexical head that might be located anywhere between l and r, the distinction

between these two cases is irrelevant.

� An HC item [l; r; A;B!����; i; j] is recognized if [l; r; A] has been set as a
goal, A>�

hB holds, and �)�ai+1 : : : aj has been established. Such an item
will only be recognized if the head of B!�� is contained in �.

In order to get an intuitive idea of what is going on, we will �rst look at the walk

through our single parse tree that is performed by the HC chart parser. A formal
de�nition is given afterwards. The head-corner tree walk for our example is shown
in Figure 11.1. It is similar to the left-corner tree walk in Figure 10.5. There is
only one di�erence: from a nonterminal we �rst visit (the subtree with as it root)
the head daughter.

By analogy to the LC case, steps down to a nonterminal head are absent.
No steps down need be taken by the algorithm along paths of heads, as these
are encoded in the relation >�

h. Steps down to non-head nonterminal daughters
correspond to setting new goals. The �nal chart of the head-corner parser is shown
in Figure 11.2. The numbers of the items on the chart correspond to the labels
of arrows in Figure 10.5. The names of the steps that appear in the motivation
column should be clear, by analogy to the LC chart parser. Note, however, that

11.2 A predictive Head-Corner chart parser 241

*det

........... �
�
�
���

9

*n

........... A
A
A
AAK 8

*v

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. �
�
�
�
�
�
�
��

1

*det

........... �
�
�
���

4

*n

........... A
A
A
AAK 3

NP

�
�

�
�

��	

7

�
�
�
�
���

10

NP

HHHHHj2
HH

HH
HY 5

VP

.H
HH

HHY 6
S

Figure 11.1: A head-corner tree walk

unlike the LC case, we sometimes proceed in rightward direction and sometimes
in leftward direction. As a consequence, two di�erent cases of scan , complete and
predict steps exist.

item motivation

(0) [0; 5; S] initial agenda
(1) [0; 5; S;VP!�*v�NP ; 2; 3] head-corner(a) (0,iii)
(2) [3; 5;NP] right predict (1)
(3) [3; 5;NP;NP!*det�*n�; 4; 5] head-corner(a) (2,v)
(4) [3; 5;NP;NP!�*det *n�; 3; 5] left scan (3,iv)
(5) [0; 5; S;VP!�*v NP �; 2; 5] right complete (1,4)
(6) [0; 5; S;S!NP�VP�; 2; 5] head-corner(A) (5)
(7) [0; 2;NP] left predict (6)
(8) [0; 2;NP;NP!*det�*n�; 1; 2] head-corner(a) (7,ii)
(9) [0; 2;NP;NP!�*det *n�; 0; 2] left scan (8,i)
(10) [0; 5; S;S!�NP VP �; 0; 5] left complete (6,9)

Figure 11.2: A completed HC chart (excluding terminal items)

Schema 11.3 (pHC)
We de�ne a parsing system PpHC for an arbitrary context-free head grammar G.
The domain IpHC is given by

IPred = f[l; r; A] j A 2 N ^ 0 � l � rg;

242 11. Head-Corner chart parsing

IHC (i) = f[l; r; A;B!���1X�2�; i; j] j A 2 N ^ A>�

hB ^
B!��1X�2 2 P ^ 0 � l � i � j � rg;

IHC (ii) = f[l; r; A;B!��; j; j] j A 2 N ^ A>�

hB ^
B!" 2 P ^ 0 � l � j � rg;

IpHC = IPred [IHC (i) [IHC (ii):

It should be noted that some restrictions are enforced by the the de�nition of the
domain. The left-hand side of the recognized part must be a transitive/reexive
head of the nonterminal in the goal part. Hence this condition need not be stated
again when we de�ne the deduction steps.
The set of hypotheses is a formal parameter that can be instantiated for any

particular sentence. In this case, however, unlike the schema pLC, we need to
be able to derive the length of the sentence from the set of hypotheses. This
information is provided by a special end-of-sentence marker. Hence, for arbitrary
sentences a1 : : :an a set of hypotheses is de�ned as

H = f[a1; 0; 1]; : : : ; [an; n� 1; n]; [$; n; n+ 1]g (11.1)

The de�nition of DpHC looks complicated because of the complexity of the items
and the multitude of di�erent cases. The best way to understand the de�nition
is to keep in mind that each type of deduction step is a straightforward extension
of a corresponding type of LC deduction step. We distinguish subsets of D for
initialize, terminal head-corner , nonterminal head-corner , empty head-corner , left
predict , right predict , left scan, right scan, left complete, and right complete de-
duction steps. The di�erent kinds of head-corner steps are abbreviated with the
symbols a, A, and " as usual.

DInit = f[$; n; n+ 1] ` [0; n; S]g;

DHC(a) = f[l; r; A]; [b; j � 1; j] ` [l; r; A;B!��b�; j � 1; j]g;

DHC(A) = f[l; r; A;C!���; i; j] ` [l; r; A;B!��C�; i; j]g;

DHC(") = f[l; r; A]; ` [l; r; A;B!��; j; j]g;

DlPred = f[l; r; A;B!�C���; i; j] ` [l; i; C]g;

DrPred = f[l; r; A;B!����C; i; j] ` [j; r; C]g;

DlScan = f[a; j � 1; j]; [l; r; A;B!�a���; j; k]
` [l; r; A;B!��a��; j � 1; k]g;

DrScan = f[l; r; A;B!����a; i; j]; [a; j; j + 1]
` [l; r; A;B!���a�; i; j + 1]g;

11.3 Correctness of the HC chart parser 243

DlCompl = f[l; j; C;C!���; i; j]; [l; r; A;B!�C���; j; k]
` [l; r; A;B!��C��; i; k]g;

DrCompl = f[l; r; A;B!����C; i; j]; [j; r; C;C!���; j; k]
` [l; r; A;B!���C�; i; k]g;

DpHC = DInit [DHC(a) [DHC(A) [DHC(") [DlPred [DrPred[
DlScan [DrScan [DlCompl [DrCompl:

Thus we have fully speci�ed a parsing system PpHC = hIpHC;H;DpHCi for an
arbitrary context-free head grammar G. 2

The chart parser based on pHC does not need the additional hypothesis

[$; n; n+1]. The initial chart contains [a1; 0; 1]; : : :; [an; n�1; n]; the initial agenda
is set to [0; n; S] as before. The end-of-sentence marker was included in the parsing

schema only because D, by de�nition, is independent of (the length of) the string
that is to be parsed. The chart is initialized for a particular given sentence.

Head-corner parsing of natural language reduces the ambiguity during the con-
struction of a parse. Recognizing the head of a phrase �rst enables a more e�ective
use of feature inheritance for the recognition of other parts of a phrase. A disad-
vantage, in the case of context-free grammars, is the increased complexity caused
by the non-sequential way in which the sentence is processed. Some deduction
steps involve 5 position markers, which means that a straightforward chart parser
implementation needs O(n5) steps in the worst case. In Section 11.4 we introduce
a simpli�ed HC chart parser that has the usual O(n3) worst-case complexity. Like
in the LC case, we split the items in a predicted part and a recognized part. In
this case it is not entirely trivial, however, that the worst-case complexity is cubic.

Things are di�erent for parsing uni�cation grammars. The usual context-free
worst-case complexity analysis is of little value. By keeping the predicted and
recognized part within a single item, the features structures of both parts can
share substructures. For \reasonable" uni�cation grammars, this should be a
much more important factor for the e�ciency of the algorithm than the risk of a
worst-case explosion of items. While it is always possible to blow up the e�ciency
of uni�cation grammar parsers with carefully constructed nasty grammars, it is
simply assumed that natural language grammars are not worst-case. In Section
11.8 we discuss an extension of the HC chart parser with feature structures.

11.3 Correctness of the HC chart parser

Similar to the correctness proof of the LC chart parser, we will �rst postulate a
set of viable items and afterwards prove that all viable items and no others are
valid.

244 11. Head-Corner chart parsing

De�nition 11.4 ((pHC-)viable items)
We de�ne pHC-viability (or shortly viability) for each of the types of items used.

� Let
 denote the set of viable predict items.
 is the smallest set satisfying
the following conditions:

� [0; n; S] 2
,

� if [l; r; A] 2
 and there are B;C;X; �; �; ; i; j such that

(i) A>�

hB,

(ii) B!�X�C 2 P ,

(iii) X�)�ai+1 : : : aj, and

(iv) l � i � j � r

then [j; r; C] 2
,

� if [l; r; A] 2
 and there are B;C;X; �; �; ; i; j such that

(i) A>�

hB,

(ii) B!�C�X 2 P ,

(iii) �X)�ai+1 : : : aj, and

(iv) l � i � j � r

then [l; i; C] 2
.

� A head-corner item [l; r; A;B!����; i; j] is viable if

(i) [l; r; A] is viable,

(ii) A>�

hB,

(iii) l � i � j � r,

(iv) �)�ai+1 : : :aj , and

(v) � contains the head of B!��.

� A terminal item [a; j � 1; j] is viable if a = aj;
furthermore, [$; n; n+ 1] is viable. 2

Note that the de�nition of viable head-corner items covers both IHC (i) and IHC (ii).
If � = " then � = = ", i = j, and " is the head of B!��.

Unlike the LC case, there is no straightforward direct de�nition of viability of
predict items, due to the non-sequential nature of the HC parser.

Corollary 11.5

An item [0; n; S;S!���; 0; n] is pHC-viable for a string a1 : : :an if and only if
S)�)�a1 : : : an. 2

11.3 Correctness of the HC chart parser 245

Lemma 11.6

Any item contained in V(PpHC) is is pHC-viable
(i.e., the HC chart parser is sound).

Proof: straightforward, as Lemma 10.6. 2

Lemma 11.7

All pHC-viable items are contained in V(PpHC)
(i.e., the LC chart parser is complete).

Proof .
We follow the same line as in the proof of Lemma 10.7. We de�ne a function w,
the tree walk function, that assigns a rank value to all viable items. In order to
prove (by induction on w) that each viable item is valid, it su�ces that show that
for each viable item � is the consequent of some deduction step �1; : : : ; �k ` � with
w(�i) < w(�) for 1 � i � k.
We de�ne the function w for each item such that it corresponds to the minimum
length of a head-corner walk through a (partial) parse tree that is needed to derive
the item. We count all edge traversals, also the dotted lines in Figure 11.1. The
de�nition of w makes use of parameters �, �, and � that encode the w-value of
a relevant predict item, the number of edges skipped by the >�

h relation, and the
length of a derivation of the recognized part. See the proof of Lemma 10.7 for a
more detailed account.
The partial function w : IpHC ! IN is de�ned by

� w([0; n; S]) = 0;

� w([i; j; C]) = min(f� + (�+ 1) + 2� j 9A;B; �; �; ; l; h :
[l; j; A;B!����C; h; i] is viable ^
� = w([l; j; A]) ^
A >�

h B ^
�)�ah+1 : : : ai g

[f� + (�+ 1) + 2� j 9A;B; �; �; ; r; k :
[i; r; A;B!�C���; j; k] is viable ^
� = w([i; r; A]) ^
A >�

h B ^
�)�aj+1 : : : ak g)

� w([l; r; A;B!����; i; j]) = min(f� + � + 2� j � = w([l; r; A]) ^
A>�

HB ^
�)�ai+1 : : :aj g

� w([i; j; C]) and w([l; r; A;B!����; i; j]) are unde�ned if the conditions in
the preceding two cases cannot be satis�ed (i.e., the minimum is taken over
an empty set).

246 11. Head-Corner chart parsing

It is easy to verify that for each viable item there are at least one �, �, � for which
the conditions are ful�lled, hence, (by induction on the de�nition of viability) w
is de�ned for all viable items.
For each viable item �, by analogy to the left-corner case, one can straightforwardly
�nd a deduction step �1; : : : ; �k ` � with w(�i) < w(�). We will not write out the
individual cases. 2

Theorem 11.8 (correctness of the pHC chart parser)
For any context-free head grammar G and string a1 : : :an it holds that

[0; n; S;S!���; 0; n] 2 V(PpHC) if and only if S)�)�a1 : : : an.

Proof: directly from Lemmata 11.6 and 11.7 and Corollary 11.5 2

11.4 HC chart parsing in cubic time

The purpose of this section is to derive a variant of the Head-Corner chart parser
that conforms to the usual worst-case complexity bounds for context-free chart
parsing. In contrast to the LC case, this is not trivial.

In two steps we change the schema pHC into a simple schema sHC. We also
spend a few words on further optimizations. The correctness of sHC will be proven
in Section 11.5, a detailed complexity analysis follows in 11.6.

Like in the left-corner case, we can split the HC items into a predicted and
recognized part. We will call this schema sHC'. Some more modi�cations need to
be carried through in order to obtain the desired parsing schema sHC that can
be implemented in cubic time.

We use the following kinds of items

[l; r; A] : predict items,

[B!����; i; j]: double dotted (DD) items,

[a; j � 1; j] : terminal items.

The double dotted items have the obvious interpretation. For each such item that
is recognized it will hold that �)�ai+1 : : :aj .

Schema 11.9 (sHC')
We de�ne a parsing system PsHC' for an arbitrary context-free head grammar G.
The domain IsHC' is given by

IPred = f[l; r; A] j A 2 N ^ 0 � l � rg;

IHC (i) = f[B!���1X�2�; i; j] j B!��1X�2 2 P ^ 0 � i � jg;

IHC (ii) = f[B!��; j; j] j B!" 2 P ^ j � 0g;

11.4 HC chart parsing in cubic time 247

IsHC' = IPred [IHC (i) [IHC (ii):

In pHC only combinations of predicted and recognized parts were considered
with a relevant head-corner relation; this was enforced by the de�nition of IpHC. In
IsHC' the predicted and recognized parts have been separated into di�erent items,
hence we must explicitly restrict the deduction steps only to the appropriate cases.
Note that a predicted part is needed for the scan and complete steps; it provides
a scope within which the position markers of the item can be extended by moving
the dots outward. In the LC case, there is no need to monitor such a scope,
because the LC schemata proceeds through the sentence in contiguous fashion.
Thus we obtain the following de�nition of D:

DInit = f[$; n; n+ 1] ` [0; n; S]g;

DHC(a) = f[l; r; A]; [b; j � 1; j]
` [B!��b�; j � 1; j] j A>�

hB ^ l < j � rg;

DHC(A) = f[l; r; A]; [C!���; i; j]
` [B!��C��; i; j] j A>�

hB ^ l � i � j � rg;

DHC(") = f[l; r; A] ` [B!��; j; j] j A>�

hB ^ l � j � rg;

DlPred = f[l; r; A]; [B!�C���; i; j]
` [l; i; C] j A>�

hB ^ l � i � j � rg;

DrPred = f[l; r; A]; [B!����C; i; j]
` [j; r; C] j A>�

hB ^ l � i � j � rg;

DlScan = f[l; r; A]; [a; j � 1; j]; [B!�a���; j; k]
` [B!��a��; j � 1; k] j A>�

hB ^ l < j � k � rg;

DrScan = f[l; r; A]; [B!����a; i; j]; [a; j; j + 1]
` [B!���a�; i; j + 1] j A>�

hB ^ l � i � j < rg;

DlCompl = f[l; r; A]; [C!���; i; j]; [B!�C���; j; k]
` [B!��C��; i; k] j A>�

hB ^ l � i � k � rg;

DrCompl = f[l; r; A]; [B!����C; i; j]; [C!���; j; k]
` [B!���C�; i; k] j A>�

hB ^ l � i � k � rg;

DsHC' = DInit [DHC(a) [DHC(A) [DHC(") [DlPred [DrPred[
DlScan [DrScan [DlCompl [DrCompl:

With H for an arbitrary sentence as de�ned in (11.1) we have fully speci�ed
a parsing system PsHC' = hIsHC';H;DsHC'i for an arbitrary context-free head
grammar G. 2

248 11. Head-Corner chart parsing

A chart parser is obtained from the parsing schema as usual; The init step should
be interpreted as initializing the agenda with [0; n; S] for a given sentence. The
end-of-sentence marker is not used by the chart parser. It was introduced only to
specify the schema independent of a particular sentence length.

The number of items that can be recognized now is O(n2), but the work in-
volved for an arbitrary current item is more than linear. Because the complete
steps have 5 positions markers, they account for O(n5) complexity. We will de�ne
a schema sHC as a modi�cation of sHC', in such way that it can be implemented
with O(n3) complexity. At the same time we include some changes that reduce
the complexity in terms of the size of the grammar. These will be discussed at
length in 11.6.

� By an appropriate change in the de�nition of D we will reduce the number of
position markers in complete steps to 3 and increase the positions markers

involved in a predict step to 5. This leaves O(n5) as the complexity of a
naive, straightforward implementation of the chart parser. In 11.6, however,
we will argue that all predict step can be dealt with in O(n3) time by adding
suitable auxiliary data structures to the implementation.
We will change the schema, such that the following statement holds:

if [l; r; A] 2 V then [i; j; A] 2 V for arbitrary l � i � j � r. (11.2)

As a result, we can change the position markers l and r in the complete steps
to i and j; similar for the scan steps.
In order to achieve (11.2), however, some more work must be done by the
init and predict steps. Init now simply recognizes [i; j; S] for all applicable i
and j.
In the left predict we can replace

[l; r; A]; [B!�C���; j; k] ` [l; j; C]

as de�ned in sHC' by

[l; k; A]; [B!�C���; j; k] ` [A; h; i]

with l � h � i � j and A>�

hB. A similar extension of right predict steps
is made. As a consequence, the validity of [l; k; A] implies the validity of
[h; i; A] for intervals located between l and r.2 Hence we may restrict the
left complete steps

[l; r; A]; [C!��; i; j]; [B!�C���; j; k] ` [B!��C��; i; k]

2It can be shown that the same condition holds if for a less liberal expansion of the predict

rules , that take only 4 position markers. It su�ces to add predict steps

[h; k; A]; [B!�C���; j; k] ` [A; h; i]

with h � i � j and A>�

h
B, because for any predicted [l; k; A] it is clear that [h; k; A] with

11.4 HC chart parsing in cubic time 249

as de�ned in sHC' to only the cases

[i; k; A]; [C!��; i; j]; [B!�C���; j; k] ` [B!��C��; i; k]:

Right complete steps are restricted in the same fashion.
In a similar way, we can restrict the position markers in the various HC
steps.

� A second change is (a slight modi�cation of) an optimization suggested by
Satta and Stock [1989]. Suppose the grammar has a production A!XY Z.
Furthermore, let [A!�XY Z�; h; k] be valid. Then, starting from an item
[A!X�Y �Z; i; j] there are two ways to recognize the entire production. One
could start either by moving the left dot leftwards or by moving the right dot
rightwards. Clearly, if the two mentioned items are valid then [A!�XY �Z;

h; j] and [A!X�Y Z�; i; k] must be valid as well.
We will simply discard the second option and state as a general rule that ex-
pansion to the right is allowed only when the left dot is in leftmost position3.

� A third change that is merely of an administrative nature is the introduction
of a new kind of items. We use CYK items of the form [A; i; j] to denote that
an arbitrary production with left-hand side A has been recognized between
positions i and j. This extension has some inuence on the e�ciency of the
parser, but is also useful to simplify the notation. We may write [X; i; j] as
a generic notation for a completely recognized constituent that is either a
terminal ([a; i; j]) or a nonterminal ([A; i; j]). Hence, in the notation of the
parsing schema, a scan can be seen now as a special case of a complete. CYK
items [A; i; j] are recognized by pre-complete steps of the form

[A!���; i; j] ` [A; i; j]:

Thus we obtain the following de�nition for a a parsing schema sHC.

Schema 11.10 (sHC)
We de�ne a parsing system PsHC for an arbitrary context-free head grammar G,
incorporating the changes discussed above.

l � h � k can also be predicted; similarly for right predict. But the extra degree of freedom
has no bearing on the complexity of the algorithm (as we will prove in Section 11.6) and might

o�er better opportunities for e�cient implementation, because the whole range of predicts can be
dealt with in a single operation, rather than having to do a series of predicts for each applicable
value of i.

3For grammarswith rather long right hand sides (and centrally located heads) one could think
of more sophisticated criteria. Satta and Stock allow expansion in arbitrary direction and then

administrate that the other direction is blocked. This is a rather academic problem, however;
productionswith the head neither in left nor right position are very hard to �nd, if at all existent.

250 11. Head-Corner chart parsing

IPred = f[l; r; A] j A 2 N ^ 0 � l � rg;

IHC (i) = f[B!���X�; i; j] j B!��X 2 P ^ 0 � i � jg;

IHC (ii) = f[B!��X��; i; j] j B!�X� 2 P ^ 0 � i � jg;

IHC (iii) = f[B!��; j; j] j B!" 2 P ^ j � 0g;

ICYK = f[A; i; j] j A 2 N ^ 0 � i � jg;

IsHC = IPred [IHC (i) [IHC (ii) [IHC (iii) [ICYK;

DInit = f[$; n; n+ 1] ` [i; j; S] j 0 � i � j � ng;

DHC = f[i; j; A]; [X; i; j] ` [B!��X��; i; j] j A>�

hBg;

DHC(") = f[j; j; A] ` [B!��; j; j] j A>�

hBg;

DlPred = f[l; r; A]; [B!�C���; k; r]
` [i; j; C] j A>�

hB ^ l � i � j � kg;

DrPred = f[l; r; A]; [B!���C; l; i]
` [j; k; C] j A>�

hB ^ i � j � k � rg;

DpreCompl = f[A!���; i; j] ` [A; i; j]g;

DlCompl = f[i; k; A]; [X; i; j]; [B!�X���; j; k]
` [B!��X��; i; k] j A>�

hBg;

DrCompl = f[i; k; A]; [B!���X; i; j]; [X; j; k]
` [B!��X�; i; k] j A>�

hBg;

DsHC = DInit [DHC [DHC(") [DlPred [DrPred[
DpreCompl [DlCompl [DrCompl:

Thus we have fully speci�ed a parsing system PsHC = hIsHC;H;DsHCi for an
arbitrary context-free head grammar G. 2

Although we have established the optimal worst-case complexity bounds that
could reasonably be obtained (cf. Section 11.6), the e�ciency in practical cases
can be increased a lot by adding more sophistication to the simpli�ed chart parser,
both at schema level by applying some more �lters and at implementation level by
introducing appropriate data structures. We will not further pursue the matter of
optimizing the chart parser by application of �lters, but only give some hints.

11.5 Correctness of sHC 251

� A predicted item should �t to the left, �t to the right, or both. This can be
expressed by using predict items of the form [= l;= r; A], [� l;= r; A] and
[= l;� r; A] with the obvious interpretation. When looking for an X such
that A>�

hX, one could distinguish (nonexclusively) between cases where

� X must occur at the left (i.e., if A)��X� then � = "),

� X need not occur at the left (i.e., A)�a�X�),

and similarly for right alignment. The head-corner operator can use align-
ment information to discard useless valid items.

� A dynamic �lter that uses one position look-ahead and one position look-
back may prevent recognition of a number of useless valid items at fairly low

cost.

11.5 Correctness of sHC

We describe the transformation from pHC to sHC in terms of the relations of
Chapters 5 and 6. For each step, additionally, we will argue that the correctness
is preserved.

As in the LC case (cf. Section 10.5), we de�ne an auxiliary system pHC', which
is a trivial dynamic �lter of pHC, adding spurious antecedents to deduction steps

that do not �lter anything. To each deduction step in HC(A), lpred , rpred , lcompl ,
and rcompl , we add an antecedent [l; r; A], reduplicating the recognized part of the
antecedent HC item. It follows trivially that V(PpHC) = V(PpHC').

The transformation from sHC' to sHC cannot be directly expressed in the
available terminology, and we introduce an auxiliary schema sHC" as an inter-
mediate step. The di�erent transformation steps from sHC' to sHC are partly
�lters and partly re�nements. We will de�ne sHC" such that it is a re�nement of
sHC' and a �lter can be applied to obtain sHC. The schema is de�ned, as usual,
by a parsing system PsHC" for an arbitrary context-free head grammar G:

IPred = f[l; r; A] j A 2 N ^ 0 � l � rg;

IHC (i) = f[B!���1X�2�; i; j] j B!��1X�2 2 P ^ 0 � i � jg;

IHC (ii) = f[B!��; j; j] j B!" 2 P ^ j � 0g;

ICYK = f[A; i; j] j A 2 N ^ 0 � i � jg;

IsHC" = IPred [IHC (i) [IHC (ii) [ICYK;

DInit = f[$; n; n+ 1] ` [i; j; S] j 0 � i � j � ng;

252 11. Head-Corner chart parsing

DHC = f[l; r; A]; [X; i; j]
` [B!��X��; i; j] j A>�

hB ^ l � i � j � rg;

DHC(") = f[l; r; A] ` [B!��; j; j] j A>�

hB ^ l � j � rg;

DlPred = f[l; r; A]; [B!�C���; k; r]
` [i; j; C] j A>�

hB ^ l � i � j � kg;

DrPred = f[l; r; A]; [B!����C; l; i]
` [j; k; C] j A>�

hB ^ i � j � k � rg;

DpreCompl = f[A!���; i; j] ` [A; i; j]g;

DlCompl = f[l; r; A]; [X; i; j]; [B!�X���; j; k]
` [B!��X��; i; k] j A>�

hB ^ l � i � k � rg;

DrCompl = f[l; r; A]; [B!����X; i; j]; [X; j; k]
` [B!���X�; i; k] j A>�

hB ^ l � i � k � rg;

DsHC" = DInit [DHC [DHC(") [DlPred [DrPred[
DpreCompl [DlCompl [DrCompl:

Theorem 11.11 (Correctness of sHC)
The following relations hold:

pHC
df
=) pHC'

ic
=) sHC'

sr
=) sHC"

sf
=) sHC.

Moreover, each of these parsing schemata is correct.

Proof.

� The correctness of pHC was established in Theorem 11.8, the correctness of
pHC' follows from the above argument.

� The item contraction from pHC' to sHC' is similar to the LC case; item
contraction preserves correctness.4

� In schema sHC" we have inserted CYK items and pre-complete steps. These
constitute a straightforward step re�nement. A second step re�nement is
the recognition of extra predict items [i; j; A] with l � i � j � r for each
recognized predict item [l; r; A]. In sHC" these items are spurious, how-
ever, because we have not discarded any complete step. It is easy to show
(by induction on the length of the derivation from the hypotheses) that if
[B!����; i; j] 2 V(PsHC") then also [B!����; i; j] 2 V(PsHC'). The re-
verse is trivial. Hence, from the correctness of sHC' it follows that sHC"
is correct.

4That is, when Corollary 5.8 is extended to the type of parsing systems we deal with here; cf.

footnote 8 in Chapter 10, page 235.

11.6 Complexity analysis of sHC 253

� The transformation from sHC" to sHC consists of two static �lters. Firstly,
trimming down the complete steps and head corner steps to the case l = i,
j = r is a mere redundancy elimination; the set of valid items is not a�ected.
Secondly, the Satta and Stock �lter removes some of the DD items of the
form [A!X����; i; j]; but, evidently, the validity of DD items of the form
[A!���; i; j] is not a�ected. Hence sHC is correct as well. 2

11.6 Complexity analysis of sHC

We will �rst do a complexity analysis in terms of the sentence length only. After
having shown that an implementation in O(n3) time is possible, we also pay atten-
tion to the size of the grammar as a complexity factor. We obtain the same worst-
case complexity bounds as the GHR algorithm, which proves that that additional
sophistication of a HC parser does not lead to an increase in formal complexity.

The space complexity is O(n2), obviously, because each type of item contains
two position markers. An upper bound for the time complexity can be estimated
by assuming that each of the O(n2) possible valid items will trigger each applicable
type of deduction step.

All head corner steps contribute O(n2). A (non-empty) head-corner step can
be triggered in two di�erent ways: either by taking [i; j; A] or by taking [X; i; j]
from the agenda.

All complete steps, similarly, contribute a factor O(n3). A complete step can be
triggered in three di�erent ways: by taking each kind of item from the agenda and
searching the chart for the two other items. (It is rather unlikely, but nevertheless
possible, that a predict item taken from the agenda will trigger a scan/complete
step that produces a hitherto unrecognized item. We will not look for optimization
in this respect; our prime concern now is cubic time complexity).

The hard case is the set of O(n5) predict steps. Let us have a closer look at
left predict steps, having the form

[l; r; A]; [B!�C���; k; r] ` [i; j; C]

with l � i � j � k � r. We de�ne an invocation of a left predict as a situation in
which one antecedent is taken from the agenda and a corresponding antecedent is
found on the chart. An invocation,

[l; r; A]; [B!�C���; k; r] ` : : : (11.3)

corresponds to a set of left predict steps for appropriate i and j values of the
consequent. It is irrelevant whether [l; r; A] comes from the agenda and the item
[B!�C���; k; r] is already present on the chart or reversed. Only a cubic number
of di�erent possibilities exist, hence at most O(n3) invocations occur.

At each invocation, however, there are in general O(n2) di�erent consequents.
Thus a total number of O(n5) times a consequent is computed, looked for in chart

254 11. Head-Corner chart parsing

and agenda, and added if not yet present. As only O(n2) di�erent consequents
of left predict steps exist, some wastage can be avoided with a more sophisticated
book-keeping technique.

We call an invocation of the form (11.3) successful if [l; k; C] is neither present
on the chart nor on the agenda and unsuccessful if [l; k; C] is already present on the
chart or pending on the agenda. In the latter case, every [i; j; C] with l � i � j � k

must also be present in chart or agenda.
There are at mostO(n3) unsuccessful invocations, for each combination of position
markers l; k; r. For each unsuccessful invocation only a constant amount of work
needs to be done (i.e. verifying that [l; k; C] has indeed been recognized already).
The number of successful invocations, on the other hand, is limited to O(n2),
because only O(n2) di�erent predict items exist. The amount of work that is
carried out by an individual successful invocation is possibly quadratic. The fact
that matters here, however, is that the total amount of work to be done by all
successful invocations must not be more than cubic. This is established as follows.

We will give an informal example, rather than a formal proof. The predict
items are stored in a table in the form of an upper triangular matrix, indexed
by the positions markers (like a CYK matrix). The item [i; j; A] is represented
by writing an A in table entry Ti;j . The matrix contains both the chart and the
agenda (the agenda could be represented, for example, by keeping a linked list of
matrix entries). Suppose we predict

[1; r; A]; [B!�C���; 7; r] ` : : :

and we have a predict table that already contains some entries for C as shown in
Figure 11.3. Clearly, one only has to add C's to all table entries marked �.

It is obvious that the total amount of new C's added in this way is quadratic

| the table is only quadratic in size. Unfortunately, however, things are slightly
more complicated. On top of adding C's to the indicated positions, one also has to
�nd out that the other positions left/down from the starting point T1;7 do contain
C's already. To that end, we check the matrix column by column. In each column
we may stop when we hit a �eld containing a C. Moreover, if we hit upon a
column that contains a C already in the �rst position we are interested in, no
further columns need be checked.

We call an access to a matrix entry a successful access if no C is present
yet and an unsuccessful access if it contains a C already. The total number of
successful accesses is clearly quadratic. The total number of unsuccessful accesses
is estimated as follows; For each successful invocation, a linear number of columns
is checked, leading to O(n) unsuccessful accesses (see Figure 11.4). Hence the total
number of unsuccessful accesses is at most O(n3).

Thus, in summary, we have in the worst case

11.6 Complexity analysis of sHC 255

0

1

2

3

4

5

6

7

88 (left)

0 1 2 3 4 5 6 7 8 (right)

C C C

C C

C C C

C C

C

C C C C

C C C

C C

C

� � � � �

� � �

� � �

� � �

Figure 11.3: Table entries to which a C must be added

0

1

2

3

4

5

6

7

88 (left)

0 1 2 3 4 5 6 7 8 (right)

C C C

C +

C + +

C C

C

+ + + C

C C C

C C

C

� � � � �

� � �

� � �

� � �

Figure 11.4: Unsuccessful accesses (`+')

256 11. Head-Corner chart parsing

� O(n2) successful accesses by successful invocations

� O(n3) unsuccessful accesses by successful invocations

� O(n3) unsuccessful invocations; for each one a single unsuccessful access.

We will now include the size of the grammar in the complexity analysis. The
size of the grammar can be captured in a single �gure, denoted jGj, which is
obtained by counting every left-hand-side symbol and every right-hand-side symbol
in every production:

jGj =
X

A!�2P

(1 + j�j): (11.4)

For a more re�ned analysis, we use jN j: the number of nonterminals, jV j: the
number of terminals and nonterminal symbols, jP j: the number of productions

and %: the length of the longest right-hand side of any production. For some
technical computations we also need another, rather ad hoc parameter h: the
maximum number of productions that have an identical non-empty head.

In order to determine the space complexity, we list the various tables that are
used by the parser.

� The chart and agenda are stored in tables of size O(jGjn2).

� It is assumed that the relation >�

h is available in tabular form (if not, this
has repercussions on the time complexity). This table consumes O(jN jjV j)
space.

� The predict table as discussed above takes O(jN jn2) space.

� We use a table in which we can �nd all productions for a given head. (Not
relevant for the space complexity).

� We also use a dotted rules table which, for a given nonterminal A, yields all
double dotted rules of the forms B!�A��� and B!���A that are used
in DD items in sHC. (Not relevant for the space complexity).

Hence we obtain a total space complexity

O(jN jjV j+ jGjn2):

The time complexity for each type of deduction step is determined as follows.
For every type of antecedent we multiply the maximal number of antecedents of
that type with the time complexity of searching for applicable fellow antecedents
and the recognition of (the appropriate set of) consequents.

11.6 Complexity analysis of sHC 257

head corner : we distinguish three cases for head corners C, a and ".

(i) for A>�

hB, B!�a 2 P , 0 < j � n:

[j � 1; j; A]; [a; j � 1; j] ` [B!��a��; j � 1; j];

(ii) for A>�

hB, B!�C 2 P , 0 � i � j � n:

[i; j; A]; [C; i; j] ` [B!��C��; i; j];

(iii) for A>�

hB, B!" 2 P , 0 � j � n:

[j; j; A] ` [B!��; j; j];

The only case that is relevant for complexity bounds is (ii).
O(jN jn2) predict items each invoke a search over the jP j productions; checking
whether a head has been recognized needs constant time, yielding O(jN jjP jn2).
The sub-case where the rule is triggered by a CYK item is somewhat more di�cult.
For each of the O(jN jn2) CYK items at most h productions have to be considered,
for each of which an O(jN j) match with predict items has to be attempted, yielding
O(jN j2hn2).

predict : for A>�

hB, 0 � l � i � j � k � r � n:

[l; r; A]; [B!�C���; k; r] ` [i; j; C];

[l; r; A]; [B!���C; l; i] ` [j; k; C];

We have dealt with the �ve position markers above. For computing the complex-
ity, here, we simply assume that invocations are unsuccessful. The work caused by
the O(n2) successful accesses in successful invocations is counted separately (and
contributes only O(1) in each case). Hence we obtain O(jN jn2) invocations trig-
gered by predict items, causing an O(jGjn) search for applicable DD items. When
the predict is triggered by one of the O(jGjn2) DD items, an O(jN jn) search �nds
the appropriate predict items. Hence the complexity is O(jN jjGjn3).

pre-complete: for 0 � i � j � n:

[A!���; i; j] ` [A; i; j]

scan: for A>�

hB, 0 � i � j � n:

[j � 1; k; A]; [a; j � 1; j]; [B!�a���; j; k] ` [B!��a��; j � 1; k]

[i; j + 1; A]; [B!���a; i; j]; [a; j; j + 1] ` [B!��a�; i; j + 1]

Pre-complete and scan are not relevant for the time complexity bounds.

258 11. Head-Corner chart parsing

complete: for A>�

hB, 0 � i � j � k � n:

[i; k; A]; [C; i; j]; [B!�C���; j; k] ` [B!��C��; i; k]

[i; k; A]; [B!���C; i; j]; [C; j; k] ` [B!��C�; i; k]

O(jN jn2) predict items trigger O(jGjn) work;
O(jGjn2) DD items trigger O(jN jn) work.
For the O(jN jn2) CYK items the accounting is slightly more complicated. If a
complete is triggered by a CYK item, we �rst search for relevant DD items. The
number of di�erent DD items that can match a CYK item will di�er according to
the nonterminal in the CYK item. The relevant DD items can be found with the
dotted rule table and checked for on the chart and agenda in constant time per
DD item. Hence, if we count all completes triggered by CYK items, rather than

individual cases, we �nd a total of O(jGjn3) combinations of CYK and DD items.
In each case, an O(jN j) search for an applicable predict item has to be carried out.
Thus we �nd a total time complexity of O(jN jjGjn3) for the complete operation.

In summary, for the head-corner chart parser that implements sHC we �nd a
total time complexity

O(jN j2hn2 + jN jjGjn3)

Theorem 11.12 (complexity of sHC)
Let h denote the maximum number of productions having the same head.
Assuming5 that O(jN jh) � O(jGjn) the parsing schema sHC can be implemented
using

O(jN jjV j) + O(jGjn2) space, and

O(jN jjGjn3) time

Proof. Direct from the above discussion. 2

How does this result relate to the complexity of standard parsing algorithms?
The practically optimal complexity bounds6 that have been established so far

5A counterexample to this assumption are, e.g, the grammars de�ned by

Pk = fS!Ai j 1 � i � kg [fAi!B j 1 � i � kg [fB!ag

with O(jN jh) = k2 > k = O(jGjn). It is clear, though, that the assumption holds for any
reasonable grammar that has not been speci�cally designed as a counterexample.

6Less than cubic time complexity bounds have been established by Valiant [1975]. This result

has only theoretical value, however. The constants involved are so large that conventional cubic-
time parsing algorithms perform much better than Valiant's algorithm on any realistic parsing

problem.

11.6 Complexity analysis of sHC 259

are O(jGjn3) for parsers without prediction and O(jN jjGjn3) for parsers with
prediction [Graham, Harrison, and Ruzzo, 1980] We will briey explain this.

Consider the improved Earley chart parser de�ned by Graham, Harrison and
Ruzzo [1980]. Parsing schemata GHR and buGHR were de�ned in Examples
6.18 and 6.19, respectively, for the predictive and bottom-up variant. The GHR
parsers can be extended with a pre-complete similar to the one introduced here.
Whenever an item [A!�; i; j] is recognized, we store in a separate CYK table the
item [A; i; j]. Hence the most complex set of deduction steps, the complete steps,
are, for 0 � i � j � k � n:

[A!��B�; i; j]; [B; j; k] ` [A!�B��; i; k]

There are O(jGjn2) active items, causing O(n) work each to search for the appro-
priate [B; j; k], yielding a total of O(jGjn3) for complete steps triggered by active
items.
There are O(jN jn2) passive (CYK) items, causing O(jGjn) work each to search
the appropriate [A!��B�; i; j], yielding a total of O(jGjjN jn3) for complete steps
triggered by passive items. This last �gure determines the complexity of the con-
ventional GHR algorithm with prediction.

It is possible to reduce the complexity of GHR by a factor jN j, by making sure
| in our terminology | that all complete steps are triggered by active items. If
passive items do not have to look around for matching active items, one only has
a complexity of O(jGjn3). In the bottom-up variant, without prediction, this is
accomplished by appropriate scheduling. When an item of the form [A!��B�; i; j]
is found, searching for some particular [B; j; k] is deferred to the moment that all
items with positions markers j and k have been found.

In the conventional GHR parser with top-down prediction this type of schedul-
ing is not possible. Hence it follows that top-down �ltering | which will decrease
the sequential computation time in ordinary cases | has a negative e�ect on the

worst-case complexity.

Thus we have shown that the parsing schema sHC can be implemented with
the same worst-case time complexity as the GHR algorithm, which has the op-
timal known worst-case complexity bounds. The GHR complexity bounds can
be improved by a factor jN j if the top-down prediction is discarded. The same
applies to Head-Corner parsing. In 11.7 we will de�ne a bottom-up HC parsing
schema buHC (as an intermediate step in the derivation of sHC from dVH).
It can be veri�ed straightforwardly that buHC can be implemented in O(jGjn3)
time. The only additional complexity factor involved in HC parsing might be the
O(jN jjV j)-sized table to store the relation >�

h.

260 11. Head-Corner chart parsing

11.7 The relation between pHC, sHC, and dVH

Comparing head-corner parsing schemata with other schemata de�ned in previ-
ous sections and chapters meets with the formal problem that context-free head
grammars are di�erent from context-free grammars. So, in order to de�ne rela-
tions between context-free parsing schemata and head-corner parsing schemata,
one should �rst extend the context-free parsing schemata to (context-free) head
grammars. A generic way to do this is the following:

apply the context-free schema as usual and ignore the head function.

Thus one obtains proper generalizations in the sense of Chapter 5. Yet this does
not seem quite right. The problem is that head grammars are not just a generaliza-
tion of context-free grammars; head grammars are a somewhat ad-hoc formalism
that has been designed with the speci�c purpose of using linguistic head informa-
tion to guide an otherwise context-free parser. The extension of a grammar G to

a head grammar G makes sense only if the concept head is used in some way or
other.

An equally gratuitous solution is simply to state that

Every context-free grammar is considered equivalent to a head-gram-
mar with the head function h limited to the values 0 and 1 (i.e., all
heads are left corners).

from this perspective, if follows easily that HC schemata are a generalizations of
LC schemata. Yet this is not satisfying either. The notion of a head is simply
nonexistent in context-free grammars and there is no a priori reason why heads
should be allocated to left corners. If heads are to be used it seems more proper
to allocate heads in some meaningful way. From that perspective, HC schemata
are not generalizations of LC schemata.

The HC schemata can be embedded in the theory of Chapters 4 and 5 if we
simply add a head function to a context-free grammar (and do not ask the question
how the heads were allocated). As a starting point we take the parsing schema
dVH1. In Chapter 6 we have transformed dVH1 to buLC and then applied a
dynamic �lter to obtain LC. A basic parsing schema (i.e., every tree occurs only
in one item) for bottom-up Head-Corner parsing can be straightforwardly derived
from dVH1. Rather than the static �lter of De Vreught and Honig, which implies
that right-hand sides of productions are processed from left to right, we apply the
same strategy as in sHC, i.e., starting from the head we work right-to-left, until
a pre�x of the right-hand side has been obtained. Subsequently, the remainder is
done in left-to-right fashion.

Schema 11.13 (buHC)
A parsing system PbuHC for an arbitrary context-free head grammar G is de�ned
by

11.7 The relation between pHC, sHC, and dVH 261

IHC (i) = f[B!���X�; i; j] j B!��X 2 P ^ 0 � i � jg;

IHC (ii) = f[B!��X��; i; j] j B!�X� 2 P ^ 0 � i � jg;

IHC (iii) = f[B!��; j; j] j B!" 2 P ^ j � 0g;

IbuHC = IHC (i) [IHC (ii) [IHC (iii);

DInit = f[$; n; n+ 1] ` [0; n; S]g;

DHC(a) = f[a; j � 1; j] ` [B!��a�; j � 1; j]g;

DHC(A) = f[A!���; i; j] ` [B!��A�; i; j]g;

DHC(") = f ` [B!��; j; j]g;

DlScan = f[a; j � 1; j]; [B!�a���; j; k] ` [B!��a��; j � 1; k]g;

DrScan = f[B!���a; i; j]; [a; j; j + 1] ` [B!��a�; i; j + 1]g;

DlCompl = f[A!���; i; j]; [B!�A���; j; k] ` [B!��A��; i; k]g;

DrCompl = f[B!���A; i; j]; [A!���; j; k] ` [B!��A�; i; k]g;

DbuHC = DHC(a) [DHC(A) [DHC(") [DlScan [DrScan[
DlCompl [DrCompl

with H as in (11.1) on page 242. 2

This schema has been obtained from dVH1 by the following transformations:

� the concatenate has been contracted with an init step (yielding left/right
scan) and with an include step (yielding left/right complete);

� a static �lter restricts the init and include steps of de Vreught and Honig to
heads only (yielding HC(a) and HC (A));

� (our version of) the Satta and Stock �lter (cf. page 249) has been applied.

Hence, dVH
sc
=) buHC. It is possible to add top-down �ltering to buHC and

de�ne a basic parsing schema HC. From this, similar to the LC case, sHC and
pHC can be derived by introducing higher-level items. The number of di�erent
cases in HC is embarrassingly high, however, and we will not take the trouble to
write out the complete schema. It su�ces to remark that a predict item [l; r; A] is
in fact an abbreviation of the existence of
either a pair of double dotted items

[D!�C�; h; l]; [B!�A��; r; k] with C>�

hB

or a pair of double dotted items

[D!C��; r; k]; [B!��A�; h; l] with C>�

hB:

Special items like [S!��; 0; 0] and [S!��; 0; 0] can be introduced to handle initial
cases.

262 11. Head-Corner chart parsing

11.8 HC parsing of uni�cation grammars

We will describe a predictive HC chart parser for uni�cation grammars. We give
a schema in the notation of Chapter 8 of a parser that was described by Margriet
Verlinden [1993].

We will �rst recall some bits of notation that have been formally introduced in
Chapter 8. Here only an informal understanding of feature structures is needed.

A constituent X has a feature structure '(X) in the usual way. We do not make
a distinction between feature graphs, constraint sets and attribute-value matrices
(avms). In chapter 8 we have formalized feature graphs and constraint sets and
shown that these are isomorphic. We use avms as an informal notation for both.

Moreover, we have introduced composite feature structures that cover the fea-

tures of a related set of objects. Consider a production

S!NP VP
hS head i

:
= hVP head i

hVP subjecti
:
= hNP i :

(11.5)

It does not only state that the VP has a subject, but also that that VP 's subject
is token identical with the NP . We write

:
= for token identity and = for type

identity. In Figure 11.5 the constraint set in (11.5) is replaced by a composite
feature structure in avm notation. In general we write '0(A!�) for the constraints
on a production A!�. We do not have a special notation for composite avms,
other than listing them together. In a composite feature structure, coreferences
may occur between di�erent avms for di�erent objects.

Other composite objects for which we de�ne composite feature structures
are items on a chart. In a conventional Earley parser we may obtain an item
[S!NP VP�; 0; n]. The features of all three constituents in the item, and corefer-
ences between these feature structures, are covered in a composite feature struc-
ture denoted '([S!NP VP�; 0; n]). If some NP and VP are known, the features
of [S!NP VP�; 0; n] can be computed by means of the equation

'([S!NP VP�; 0; n]) = '0(S!NP VP) t '(NP) t '(VP): (11.6)

It is important to notice that items on a chart are immutable. So, if features from
some item are going to be used for the computation of features of another item,
we use type identity (copying of features) rather than token identity (sharing of
features). If we would have written

:
=, rather than =, in equation (11.6), something

radically di�erent would have been expressed, i.e., that the features of NP and
VP themselves are merged into a larger feature structure for the �nal item, rather
than copies of the feature structures of NP and VP . Features are never shared

11.8 HC parsing of uni�cation grammars 263

S!NP VP

S 7�!

2
4
cat : S

head :
1

3
5

NP 7�!
2 �

cat : NP
�

VP 7�!

2
66664

cat : VP

head :
1 � �

subject :
2

3
77775

Figure 11.5: Constraints (11.5) denoted by a composite feature structure

across di�erent items on the chart.7

The initial chart contains items for the words in the sentence with feature
structures taken from the lexicon. If the lexicon o�ers multiple feature structures
for a single word, then multiple items for that word will be present on the initial
chart. In a parsing schema it is speci�ed how feature structures are to be computed
for items that will be added to the chart. For each deduction step (in the context-
free backbone) the feature structure of the consequent can be seen as a function
of the feature structures of the antecedents.

There is an important di�erence in prediction by an Earley chart parser and
prediction by an LC or HC chart parser. In the Earley chart parser, prediction
corresponds to stepwise stepping down along a path in the parse tree (cf. Figure
10.3 on page 221). In the LC and HC case, a goal is set and then one starts to
parse bottom-up towards that goal (cf. Figures 10.5 and 11.1 on pages 225 and
241). This leads to di�erent approaches and problems in prediction of features.
Prediction in an Earley chart parser may su�er from the defect that ever more
complicated feature structures are added to the same context-free item. We have
extensively discussed this in Section 9.5. This problem cannot occur in an LC/HC
chart parser, because sequences of predict steps in the Earley sense do not occur.

In context-free HC prediction we use the relation >�

h to decide whether a

7In an e�cient implementation, however, some features can be shared under some conditions,
to minimize the amount of copying that needs to be done. These conditions roughly amount to

the principle that not a single feature, value, or coreference can be added to an item because
of any computation with any other item. Hence, conceptually, we can see features of separate

items a separate, immutable structures. See also Section 9.3.

264 11. Head-Corner chart parsing

recognized constituent can be the transitive head of a goal. If A>�

hB there is some
chain of productions A)�B�, but we don't know which one. The only thing we
know is that B is a transitive head of A. It is possible to predict some features of B
from features of A only under some special conditions. Suppose that some feature
f is always shared between the left-hand side of a production and the head, for
each production in the grammar. Then, through any sequence of productions, A's
feature f will be related to B's feature f if A>�

hB holds, even though A and B

may never occur together within a single item. The f feature of B will percolate
upwards through a chain of successive items when we move bottom-up from B

towards the goal A. Such a feature is called a transitive feature.

A typical example of a transitive feature is the the agr feature that is used for
agreement between VP and NP . The constraint that there must be subject-verb
agreement is laid down in the production S!NP VP , which can be found at the
very top of a parse tree. The agreement features of the NP , however, are derived
from some noun that is the lexical head of the NP . Similarly, the agreement
features of the VP are derived from the main verb, the lexical head of the VP . So,
if we have found a VP with agreement third person singular, we set as a sub-goal
an NP with agreement third person singular. Because agreement is a transitive
feature, we only need to look at third person singular nouns as possible candidates
for a lexical head.

Not only top-level features can be transitive, also sub-features sub-sub-features
and so on. In the following de�nition, therefore, we use a feature sequence �, that
addresses an arbitrary position in a nested feature structure, rather than a feature
f . For the time being we assume that a uni�cation grammar is obtained by

adding features to a context-free head grammar (but in the sequel we reverse this
and obtain the context-free heads from the features in a uni�cation grammar).

De�nition 11.14 (transitive features)
Let G be a uni�cation grammar (cf. De�nition 8.28) with a head grammar G as
context-free backbone.
A feature (sequence) � is called transitive for a grammar G if for each production
A!�B where � occurs as a feature for A in '0(A!�B�) the following conditions
hold:

(i) the constraint hA�i
:
= hB�i occurs in '0(A!�B�),

(ii) for each non-empty production B!C� 2 P , The constraint hB�i
:
= hC�i

occurs in '0(B!C�).

For empty productions A!", a feature of hA�i may, but need not be speci�ed. 2

In order to simplify notation, we will assume that all transitive features are sub-
features of a single top-level feature called head . That is, we require that

11.8 HC parsing of uni�cation grammars 265

every production A!�B 2 P has a constraint hA head i
:
= hB head i.

This condition can always be ful�lled. If some constituents have no transitive
features at all, then their head features will be empty. If some features are transi-
tive, but not sub-feature of head , then such features will simply not be taken into
account in the HC prediction.

We will now turn this around and de�ne a head uni�cation grammar as a
uni�cation grammar that obeys certain restrictions.

De�nition 11.15 (head uni�cation grammar)
A uni�cation grammar8 G 2 UG is called a head uni�cation grammar if it satis�es
the following head property :

For each nonempty production A!X1 : : :Xk 2 P there is a unique i (1 �
i � k) such that

hAhead i
:
= hXihead i

is contained in '0(A!X1 : : :Xk).

The right-hand side symbol Xi with i according to the head property is called the
head of the production A!X1 : : :Xk.
For an empty production the head property does not apply and we call " the head
of the production.
We write hUG for the class of head uni�cation grammars. 2

The head property is not an unreasonable demand on un�cation grammars. In
HPSG, for example, there is a general principle that the syntactic and semantic
features of a constituent are those of its head. So the restriction from UG to
hUG is not very severe. One can always turn a uni�cation grammar into a head
uni�cation grammar by adding empty head features (and �rst renaming possibly
existing head features that were used for other purposes).

We will now de�ne a basic feature structure '0([l; r; A;B!����; i; j]) for a
head-corner item. Whenever an item of this form is added to the chart, it will
be decorated with a feature structure that is obtained from this basic composite
feature structure and features from other items that caused it to be recognized.
The basic feature structure is de�ned by

'0([l; r; A;B!����; i; j])
= '0(B!��) t fhA head i

:
= hB headig;

(11.7)

i.e., the basic composite feature structure of an item comprises the basic feature
structure of the production in the recognized part, augmented with head corefer-
ence of the left-hand side symbol with the constituent in the predicted part.

After this preparatory work, we can extend the parsing schema pHC straight-
forwardly to the class of grammars hUG.

8See De�nition 8.28 for the class of uni�cation grammars UG.

266 11. Head-Corner chart parsing

Schema 11.16 (pHC(UG))
We de�ne a parsing system PpHC (UG) for an arbitrary grammar G 2 hUG. A
set of hypotheses is de�ned as in (11.1) on page 242, where (like in Chapter 8)
it is assumed that the for an item [a; j � 1; j], the feature '(a):cat gives a lexical
category for the j-th word of the sentence. Multiple items [a; j � 1; j] may be
contained in the set H of hypotheses.
We assume a single hypothesis [$; n; n+ 1] with '($) = [].
The domain IpHC is given by

IPred = f[l; r; A] j A 2 N ^ 0 � l � r ^ '(A) 6=?g;

IHC (i) = f[l; r; A;B!���1X�2�; i; j]� j A 2 N ^ A>�

hB ^
B!��1X�2 2 P ^
0 � l � i � j � r ^
'0(�) v '(�) ^ '(�) 6=? g;

IHC (ii) = f[l; r; A;B!��; j; j]� j A 2 N ^ A>�

hB ^
B!" 2 P ^ 0 � l � j � r ^
'0(�) v '(�) ^ '(�) 6=? g;

IpHC = IPred [IHC (i) [IHC (ii);

with '0(�) for an item � as in (11.7).
We add identi�ers �; �; �; : : : as subscripts to an item. By writing [l; r; A;B!
���1X�2�; i; j]� we indicate that wherever � is written elsewhere in the same
formula, this is an abbreviation for [l; r; A;B!���1X�2�; i; j].
The set of deduction steps DpHC (UG) is de�ned by adding the speci�cation of
feature structures of consequents to the deduction steps of DpHC. In most cases
this is entirely straightforward.

DInit = f[$; n; n+ 1] ` [0; n; S]� j '(S�):cat = S ^
'(S�):head = '0(S):head

(where '0(S) = '0(S!)jS) for some S! 2 P)g;

DHC(a) = f[l; r; A]�; [b; j � 1; j]� ` [l; r; A;B!��b�; j � 1; j]�
j '(�) = '0(�) t '(A�) t '(b�)g;

DHC(A) = f[l; r; A;C!���; i; j]� ` [l; r; A;B!��C�; i; j]�
j '(�) = '0(�) t '(C�)g;

DHC(") = f[l; r; A]� ` [l; r; A;B!��; j; j]�
j '(�) = '0(�) t '(A�)g;

DlPred = f[l; r; A;B!�C���; i; j]� ` [l; i; C]�
j '(C�):cat = '(C�):cat ^
'(C�):head = '(C�):headg;

11.8 HC parsing of uni�cation grammars 267

DrPred = f[l; r; A;B!����C; i; j]� ` [j; r; C]�
j '(C�):cat = '(C�):cat ^
'(C�):head = '(C�):headg;

DlScan = f[a; j � 1; j]�; [l; r; A;B!�a���; j; k]�
` [l; r; A;B!��a��; j � 1; k]�

j '(�) = '(�) t '(a�)g;

DrScan = f[l; r; A;B!����a; i; j]�; [a; j; j+ 1]�
` [l; r; A;B!���a�; i; j + 1]�

j '(�) = '(�) t '(a�)g;

DlCompl = f[l; j; C;C0!���; i; j]�; [l; r; A;B!�C���; j; k]�
` [l; r; A;B!��C��; i; k]�
j '(C�):cat = '(C0

�):cat ^
'(�) = '(�) t '(C0

�) g;

DrCompl = f[l; r; A;B!����C; i; j]�; [j; r; C;C
0!���; j; k]�

` [l; r; A;B!���C�; i; k]�
j '(C�):cat = '(C0

�):cat ^
'(�) = '(�) t '(C0

�) g;

DpHC (UG) = DInit [DHC(a) [DHC(A) [DHC(")

[DlPred [DrPred [DlScan [DrScan [DlCompl [DrCompl:

In the predict steps it is to be understood that the predicted item has only two
features: head (possibly with sub-features) and syntactic category. We could just
have copied the entire feature structure of C into the predicted item. But the
other features will not be used, so we may leave them out just as well.
In the complete steps we have made a distinction between C and C0. In an item
[l; j; C;C0!���; i; j], it is possible, but not necessary to identify the predicted C

with the the recognized C0. If C >+
h C, then C0 could also be a descendant

of C. Unlike the context-free case C and C0 are not identical: it holds that
'(C):cat = '(C0):cat and '(C):head

:
= '(C0):head, but C0 may have di�erent

features as well, which C has not.
Thus we have completed the description of a parsing system PpHC (UG) =
hIpHC (UG);H;DpHC (UG)i for an arbitrary grammar G 2 hUG. 2

Note that, in general, parsing of uni�cation grammars is not guaranteed to halt.
In chapters 8 and 9 we have assumed that a grammarG is used such that no in�nite
chain of deductions occurs in bottom-up direction, i.e., V(UG(G)(a1 : : : an)) is
�nite for any a1 : : : an. It is clear that this condition su�ces to guarantee that
V(pHC(UG)(G)(a1 : : :an)) is �nite as well.

268 11. Head-Corner chart parsing

11.9 Related approaches

The �rst head-driven chart parser was described by Satta and Stock [1989]. Their
parser is purely bottom-up and does not use prediction. The buHC schema as
described in 11.7 is closely related to the algorithm of Satta and Stock. The main
di�erence is they do not prescribe whether one should proceed from the head to the
left or to the right. Both cases are allowed; in either case the other way is blocked
by keeping the appropriate administration. The di�erence is marginal, however,
because almost all productions in (man-made) natural language grammars are
binary (or unary); in these cases there is no choice of direction. The use of head-
driven prediction to enhance the e�ciency was �rst suggested by Kay [1989].

The context-free head grammars in Section 11.1 should not be confused with
Head Grammars as introduced by Pollard [1984]. These can handle discontinuous
constituents by means of \head wrapping". Head Grammars extend the class of

recognizable languages to mildly context-sensitive languages [Joshi et al., 1991].
Van Noord [1991] describes a Prolog implementation of a head-corner parser for
languages with discontinuous constituents.

Bouma and van Noord [1993] have experimented with various parsing strategies
for uni�cation grammars and conclude that for important classes of grammars it
is fruitful to apply parsing strategies that are sensitive to the linguistic notion of
a head.

11.10 Conclusion

Head-Corner parsing is a nice idea | at a su�ciently abstract level. Head-corner
chart parsing does involve a lot of detail. Parsing schemata, because of their clear
and concise notation, have proven a useful tool for specifying such a parser. We
have given formal speci�cations that are moreless legible. But these are by far
the most complicated schemata that appear in this book. This leads to a twofold
conclusion.

On the one hand, we have given substance to our claim that parsing schemata
are not just a theoretical nicety but can be e�ectively used to get a formal grip on
highly complicated algorithms. The correctness proof of the HC parsing schemata
contains some bits of hand-waving (i.e., referring to the easier LC case that has
been proven in more detail) but within acceptable limits, even to a more theoret-
ically inclined audience.

On the other hand, HC parsing is rather more complicated than LC parsing,
and one should have a good reason for wanting to use it. It is not clear whether
the gain in e�ciency o�sets the increase in bothersome details. Much depends on
the grammar, as has been con�rmed by Bouma and van Noord [1993]. An HC
parser is likely to be more e�ective than an LC parser in cases where the notion
of a head plays a central role in the structure of a grammar.

11.10 Conclusion 269

For a further understanding of the practical value of HC parsing, it would we
worthwhile to carry out some more experiments comparing the LC and HC parser
with, among others, the Satta and Stock parser on a series of practical (i.e. not
toy-sized) grammars.

Another issue that merits further practical investigation is whether there are
simple optimization techniques that could substantially increase the e�ciency of
the HC parser. At the end of Section 11.4 we have briey mentioned some ideas.
It has not yet been investigated which impact such optimizations might have on
practical performance.

270 11. Head-Corner chart parsing

Chapter 12

Generalized LR parsing

Generalized LR parsing has become popular in the second half of the eighties, after
the publication of Tomita's algorithm [Tomita, 1985]. The theoretical foundation

of this approach is in fact much older and dates back to Lang [1974].
In the context of this book, LR1 parsers are of interest because they are not

chart parsers. In previous chapters we have argued that chart parsers �t into the
parsing schemata framework in a trivial way. LR parsers are of quite a di�erent
nature, and it is to be expected that they �t into the framework in a nontrivial
way.

In this chapter we investigate how parsing schemata for LR parsers can be
de�ned. While chart parsers use items run-time to guide the parsing process, LR
parsers use similar items compile-time to compute the parsing table in which the
control functions are laid down. Therefore we will partly \uncompile" the LR
parsers and visualise how a sentence is processed by adding run-time items to the
LR parse stack. This allows a comparison between both types of parses at item
level. It follows easily that the LR(0) parsing schema is almost identical to the
Earley schema de�ned in Chapter 4.

In the next chapter we will used this insight and cross-fertilize a parallel Earley
parser with Tomita's algorithm so as to obtain a parallel Tomita parser.

Chapters 12 and 13 are self-contained and can be read as a single, separate
paper. In fact we will spend more than half of this chapter introducing Tomita's
algorithm. Deterministic LR parsing is part of the basic education of any computer

1A note on terminology: The notion LR can be used in several more speci�c or more generic
senses. LR denotes deterministic LR parsers and GLR generalized or nondeterministic LR

parsers. When determinism is not at all relevant, we write LR rather than the more cumbersome
(G)LR. Furthermore, LR parsers can be divided into SLR, LALR and (canonical) LR parsers.

We use LR in the wider sense, unless explicitly stated otherwise.

271

272 12. Generalized LR parsing

scientist, but Generalized LR parsing is much less known in that �eld. Readers
who are familiar with the basic traits of LR parsing can move straight to Section
12.3 and those who are familiar with Tomita's algorithm may skip 12.3{12.5 as
well.

After some preliminaries in Section 12.1, LR parsing is informally introduced
in 12.2. The basic idea of Generalized LR parsing is stated in 12.3. Tomita's
algorithm, treated in 12.4, is obtained by adding a graph-structured stack as an
e�cient data structure to cope with the nondeterminism of the LR parser. A
formal de�nition is given in 12.5; this serves as a reference for the formal de�nition
of our Parallel Bottom-up Tomita parser in the next chapter. Some pros and cons
of Tomita's algorithm are discussed in 12.6.

In 12.7 we will partly uncompile the algorithm and introduce the \Annotated
Tomita" variant that shows items also at run-time. Parsing schemata for LR(0)-
based and SLR(1)-based Tomita parsers are given in 12.8. We will prove the
correctness of the SLR(1) schema. Some conclusions follow in 12.9.

The presentation of Tomita's algorithm is based on Tomita [1985] (the formal
de�nition in Section 12.5 is after Lankhorst [1991]). The comparison of Tomita's
algorithm with Earley's algorithm is based on a technical report [Sikkel, 1990b],
a shorter version of which has been published as [Sikkel, 1991]. The presentation
of this comparison has been simpli�ed a lot, however, by making use of parsing
schemata.

12.1 Preliminaries

A more extensive de�nition of context-free grammars has been given in Section 3.1
Here we briey summarize the notational conventions and recall some standard
notions of parsing theory that are needed for LR parsing.

Let G = (N;�; P; S) be a context-free grammar. We write V for N [�.
A grammar G is called reduced if every symbol can occur in a parse, i.e.

(i) 8X 2 V 9�; � 2 V � : S)��X�;

(ii) 8X 2 V 9x 2 �� : X)�x:

The only use of non-reduced grammars is to serve as counterexamples to theorems.
In this chapter we have to exclude them explicitly, to be formally correct, because
constituents X that obey (ii) but not (i) will never be recognized by an LR parser.
For each grammar G = (N;�; P; S) we de�ne an augmented grammar G0 =
(N 0;�0; P 0; S0) by

N 0 = N [fS0g;

�0 = � [f$g;

12.2 LR parsing 273

P 0 = P [fS0!S$g;

with S0 and $ symbols not occurring in V . We write V 0 for N 0 [�0.
The following notational conventions will be applied consistently throughout this
chapter.
We write

A;B;C; : : : for variables ranging over N 0,
X;Y; : : : for variables ranging over V 0,
a; b; : : : for variables ranging over �0,
x; z; : : : for variables ranging over �0�,
�; �; ; : : : for variables ranging over V 0�.
" for the empty string.

We write �)� if there are 1; 2 such that � = 1A2, � = 1�2 and A!� 2 P 0.
We write �)rm� if there are ; x such that � = Ax, � = �x and A!� 2 P 0.
A string is called a sentential form if S)�.
A string is called a rightmost sentential form if S)�

rm
.

A derivation S)rm : : :)rm is called a rightmost derivation of .

The functions First and Follow are rede�ned for augmented grammars (but
to the same e�ect as First and Follow De�nition 6.10).

The function Follow : N!�0 de�nes the terminal symbols that can follow a
given nonterminal in a sentential form, i.e.,

Follow(A) = fa j 9�; � : S0)��Aa�g:

The function First : V +!�0 is de�ned as follows. If �)�a� then a 2 First(�).
Furthermore, if �)�" then any terminal that can follow � in a sentential form is
also contained in First(�). Formally,

First(�) = fa j 9�; ; � : S0)��� ^ �)�a�g:

We will use First also with a set of strings as parameter. It should be obvious
that

First(f�1; : : : ; �kg) = First(�1) [: : :[First(�k):

12.2 LR parsing

A brief, informal introduction to (deterministic) LR parsing is given in this section.
We refer to the abundant literature for a more comprehensive treatment.

The theory of LR parsing has been covered by many authors. LR parsing was
introduced by Knuth [1965]. More e�cient variants, viz. SLR and LALR parsing,

274 12. Generalized LR parsing

were de�ned by DeRemer [1969, 1971]. But LR parsing became a useful technique
for compiler construction only after automatic generation of parsing tables became
feasible. This was �rst described by Lalonde et al. [1971]. A well-known LALR(1)
compiler-compiler is Yacc [Johnson 1975].

More treatments of LR parsing theory are given by Aho and Ullman [1972,
1977], Harrison [1978], Aho, Sethi and Ullman [1986], and Grune and Jacobs [1990].
We follow Aho and Ullman in the sense that states of a parser are introduced as
sets of LR-items. Sippu and Soisalon-Soininen [1990] follow a more theoretical line
and de�ne states of a parser as equivalence classes of viable pre�xes. An extensive
bibliography on LR parsing is given by Nijholt [1983].

An LR parser is a deterministic push-down automaton. It uses a single data
structure, a stack containing states. The top element of the stack is the state the
parser is in. The parser proceeds through the sentence by two types of actions:

� shift : a word is read from the sentence and a new state is pushed onto the

stack;

� reduce: a sequence of states is popped from the stack and a new state is
pushed onto the stack.

There are two additional actions that stop the parser: an error will occur if the
string being parsed is not a valid sentence; an accept action acknowledges the fact
that a valid sentence has been scanned.

The next action is determined by the state and a pre�x of the remainder of
the input. LR parsers di�er according to how many words are used to determine
the next action. Usually a single word look-ahead is used.

In down-to-earth examples of LR parsers the general idea of a pushdown au-
tomaton is slightly modi�ed. For illustrative purposes, the states on the stack are
interlaced with grammar symbols. These grammar symbols represent parts of the
parse that have been determined so far. In the remainder of this chapter we will
only use this more legible form of LR parsers.

As an example grammar in this section we use the following grammarG3 (that
is speci�cally designed to highlight some interesting aspects of LR parsing):

(1) S ! NP VP (5) VP ! *v

(2) S ! S PP (6) VP ! *v NP

(3) NP ! *n (7) PP ! *prep NP :

(4) NP ! *det *n

The action function is coded into a parsing table. The parsing table for G3 is
shown in Figure 12.1. The action table is a matrix in which the next action can
be found for every (top of stack) state and lexical category. The end-of-sentence
marker $ is taken to be the next lexical category when the entire sentence has been
scanned. The goto table is used to determine the next state in case of a reduce

12.2 LR parsing 275

action goto

LR(0) items *d *n *v *p $ NP VP PP S

0

S0!�S$
S!�NP VP

S!�S PP

NP!�*n

NP!�*det *n

sh1 sh2 4 8

1 NP!*det �*n sh3

2 NP!*n� re3 re3 re3

3 NP!*det *n� re4 re4 re4

4
S!NP�VP

VP!�*v

VP!�*v NP

sh5 7

5

VP!*v �

VP!*v �NP

NP!�*n

NP!�*det *n

sh1 sh2 re5 re5 6

6 VP!*v NP� re6 re6

7 S!NP VP� re1 re1

8

S0!S�$
S!S�PP

PP!�*prep NP

sh9 acc 11

9

PP!*prep�NP

NP!�*n

NP!�*det *n

sh1 sh2 10

10 PP!*prep NP � re7 re7

11 S!S PP� re2 re2

Figure 12.1: A parsing table G3

276 12. Generalized LR parsing

and will be explained by an example shortly. The table also contains a column
labelled LR(0) items that we will ignore for the time being.

The shift actions are denoted by \sh k" with k a state number. Reduce actions
are denoted by \re p" with p (the number of) a production of the grammar. Empty
entries in the action table denote errors, the accept action is abbreviated acc. We
will parse our canonical example sentence the cat catches a mouse represented by
the lexical categories *det *n *v *det *n. We show the working of the parser by
a sequence of con�gurations that represent the entire stack and the remainder of
the input. The top of the stack is at the right, next to the remaining input. We
start with only the initial state 0 as the stack contents.

0 *det *n *v *det *n $: (12.1)

In the action table for state 0 and category *det we �nd \sh1". The *det is shifted
and the next state is 1:

0|*det|1 *n *v *det *n $: (12.2)

In the action table we �nd \sh3" at table entry action [1; *n]. Hence the next
con�guration is

0|*det|1|*n|3 *v *det *n $: (12.3)

The next action (for 3 and *v) is \re4". This causes the following steps.

� The topmost two states and grammar symbols *det|1|*n|3 are deleted
from the stack. These represent the right-hand side of production 4.

� The next state is determined by the top of the truncated stack and the left-
hand side symbol of production 4. In the goto table we �nd that state 0 and
nonterminal NP yield state 4.

� The left-hand side symbol and new state are pushed onto the stack.

This reduction yields the new con�guration

0|NP|4 *v *det *n $: (12.4)

Next, we �nd action[4,*v] = sh5, yielding

0|NP|4|*v|5 *det *n $: (12.5)

Note that in state 5 it does depend on the next word which action is to be taken.
If it is *prep or $, then the verb phrase comprises only a *v , which should be
reduced now. If a *det or *n follows, on the other hand, the verb phrase contains
an object, which should be shifted �rst. In this case we �nd action[5,*det] = sh1.
Proceeding in similar fashion, we get a sequence of con�gurations

0|NP|4|*v|5|*det|1 *n $; (12.6)

12.2 LR parsing 277

0|NP|4|*v|5|*det|1|*n|3 $; (12.7)

0|NP|4|*v|5|NP|6 $; (12.8)

0|NP|4|VP|7 $; (12.9)

0|S|8 $: (12.10)

Finally we �nd action [8,$] = accept , i.e., the sentence was indeed correct.

So far we have recognized the sentence but not yet constructed a parse. This
is done as follows. From each con�guration we can derive a rightmost sentential
form (if the sentence was accepted) by concatenating the stack and the remaining
input and deleting the states and the end-of-sentence marker:

*det *n *v *det *n ; (12.11)

NP *v *det *n; (12.12)

NP *v NP ; (12.13)

NP VP ; (12.14)

S: (12.15)

Shifts are ine�ective to the sentential form, reductions produce a new one. The
rightmost sentential forms (12.11){(12.15) comprise a rightmost derivation in re-
versed order. Hence all that has to be done to uniquely encode the parse tree is
to output a sequence of reductions (and output whether the parser was stopped
by accept or error).

The parser is called an LR parser because it proceeds from Left to right,
constructs a Rightmost derivation. There are various types of LR parsers that we
will not discuss here. The current one is called an SLR(1) parser; It is a simple

LR parser and uses one symbol look-ahead.

In the example, we identi�ed states by a number. This is only for easy reference.
A state in fact constitutes a set of so-called LR(0) items, cf. Figure 12.1. An item
is an object of the form A!��� with A!�� a production. Unlike Earley items,
the LR(0) items do not contain position markers. Whenever a state s occurs on
top of the stack and A!��� 2 s, the parser has recognized � somewhere in the
sentence. The positions delineating � can be derived from the composition of the
stack. In Section 12.7 we will do so explicitly.

LR(0) items A!�� with a dot in rightmost position are called �nal items;
those of the form A!�� with a dot in leftmost position are called initial items.

The initial state 0 contains the item S0!�S$, i.e., we have to start recognizing
the entire sentence. There are two ways to recognize a sentence: by S!NP VP

278 12. Generalized LR parsing

function closure(I: set of items): set of items;
begin

items := I;
while there is an item A!��B 2 items

and a production B!� 2 P such that B!�� 62 items

do items := items [fB!��g od;
closure := items;

end;

Figure 12.2: The closure of a set of LR(0) items

function next state(I: set of items, X: symbol): set of items;
begin

next state := closure(fA!�X�� j A!��X� 2 Ig)
end;

function all states: set of sets of items

begin

C := fclosure(fS0!�S$g)g;
while there is an item set I 2 C and a symbol X 2 V

such that next state(I;X) 6= ; and next state(I;X) 62 C

do C := C [fnext state(I;X)g od;
all states := C

end;

Figure 12.3: Computation of the set of states

12.3 Generalized vs. deterministic LR parsing 279

or by S!S PP . For either rewrite rule we add an initial item S!�NP VP and
S!�S PP , respectively. Similarly, there are two rewrite rules for NP and we add
NP!�*n and NP!�*det*n to state 0. In this way we have computed the closure
of S0!�S$. An algorithmic de�nition of closure is given in Figure 12.2.

A sentence could start with *det , as in our example sentence. For that case, the
action table must contain a shift for state 0 and *det . The new state (labelled 1)
is obtained by moving the dot over *det . We take the closure again, but no initial
items are added because the symbol following the dot is a terminal. Similarly, a
shift and a new state is de�ned for the case that a sentence starts with *n .

In state 1 only a single action is possible. One has just shifted a *det and
this must be followed by shifting a *n . This leads to state 3, fNP!*det *n�g,
containing a single �nal item. The only feasible action is re4. Note that this is
entered into the action table only for symbols in Follow(NP). If, e.g., another
*n were to follow the input is not a correct sentence and the parser could stop

right away.

If *det *n is reduced to NP , the symbols and state numbers *det|1|*n|3
are replaced by NP and a new state number. This new state number should be
found in the goto table. Hence, goto[0,NP] yields a new state, labelled 4:

closure(fS!NP�VPg) = fS!NP�VP ; VP!�*v ; VP!�*v NPg:

Shifting a *v moves us to state 5. Both rewrites of VP can start with a *v , hence
state 5 comprises

closure(fVP!*v �; VP!*v �NPg):

The remainder of the table is computed in similar fashion. Worth mentioning is
state 8, which contains an item S0!S�$. An entire sentence has been recognized,
hence action[8,$] = accept . It is conceivable, however, that the input string has not
been processed completely. A prepositional phrase may follow, hence action[8,PP]
yields a shift .

An algorithmic de�nition of the set of states and the parsing table is given in
Figures 12.3 and 12.4.

12.3 Generalized vs. deterministic LR parsing

An LR parser, in order to be deterministic, may only have a single action in each
table entry. If an entry contains more than one action there is a conict and the
parser doesn't know what to do. A grammar is called SLR(1) it the parsing table
for that grammar does not contain any conict. A language is called SLR(1) if
it can be described by an SLR(1) grammar. The class of SLR(1) grammars is a
severely restricted subset of the the class of context-free grammars. A necessary
(but not su�cient) condition is that the grammars is not ambiguous. While most

280 12. Generalized LR parsing

procedure construct SLR(1) table

begin

C := all states;
for each I 2 C

do for each a 2 �0 do action [I; a] := ; od;
for each item 2 I

do case item of

A!��a�:
if A!��a� = S0!S�$
then action [I,$] := action [I; $] [facceptg
else action [I; a] :=

action [I; a][fshift next state(I; a)g
fi

A!��B�:
goto[I; B] := next state(I; B)

A!��:
for each a 2 Follow(A)
do action [I; a] :=

action [I; a][freduce A!�g

od esac od;

for each a 2 T do

if action [I; a] = ; then action[I; a] := ferrorg fi

od od

end;

Figure 12.4: The computation of an SLR(1) parsing table

12.4 Tomita's algorithm 281

programming languages can be described by LR grammars, this clearly does not
hold for natural language grammars.

With some more sophistication, however, LR parsing techniques can be used
for natural language grammars. The central idea is to replace the word conict

by ambiguity . Thus we obtain a nondeterministic pushdown automaton that is
known as a Generalized LR (GLR) parser. If the state of the parser and the look-
ahead allow for di�erent actions, a nondeterministic choice is made. A sentence
is correct if and only if there is some run of the nondeterministic LR parser that
accepts its. More speci�cally, the set of parse trees of a sentence is characterized
by (the rightmost derivations produced by) all successful runs of the parser.

Nondeterministic automata are useful constructs only from a theoretical per-
spective. If we are to �nd all parse trees for a given sentence, we need some
practical way to determine all successful runs of the nondeterministic machine. A
general approach to handle nondeterministic push-down transducers dates back to
an early paper of Lang [1974]. But it has remained rather unknown until the mid-

eighties, when Tomita [1985] published his Generalized LR algorithm, written for
an audience of computational linguists rather than theoretical computer scientists.
A similar algorithm was independently discovered by van der Steen [1987].

In Section 12.4 we will give an informal introduction to Tomita's algorithm. A
formal de�nition is presented in 12.5.

12.4 Tomita's algorithm

For an exposition of Tomita's algorithm we use the canonical example grammar
G4 (which is obtained by adding a production NP!*n to grammar G2 that was
used in previous examples). de�ned by the productions

(1) S ! NP VP (5) NP!NP PP

(2) S!S PP (6) PP!*prep NP

(3) NP!*n (7) VP!*v NP :

(4) NP!*det *n

The canonical example sentence is \I saw a man with a telescope", represented by
the lexical categories

*n *v *det *n *prep *det *n : (12.16)

Both parses are represented in Figure 12.5, in a structure that is called a shared

forest ; \forest" because it comprises a set of trees, \shared" because identical
subtrees are represented only once.

The parsing table is shown in Figure 12.6. Ambiguities arise in states 11 and
12. With look-ahead *prep, both a shift and a reduce are possible, depending on
where the PP is to be attached.

A �rst, naive approach to nondeterministic LR parsing is the following. When-
ever an ambiguity arises, a di�erent copy of the stack is made for each possible

282 12. Generalized LR parsing

I saw a man with a telescope

�n �v �d �n �p �d �n

NP NP

�
�

Q
Q

NP

�
�

Q
Q

VP

�

�

�
�

Q
Q

PP

�

�

�
�

Q
Q

NP
�

�
�

������

AA

S

�

�

�

�
�

@

@@

VP

�
�

�
�

�
�

�
�

�
�

�
�

@@

S
�

�
��

Q
Q
Q
Q
Q
Q
Q
H
HH

S
�

�
�

�
�

�
�

�
�

�
�

�

PPPP

Figure 12.5: A shared forest

action. Thus we get a set of stacks that is managed in parallel. If some stack
brings the parser in a state where no action is possible, this stack is discarded.
Hence, the set of stacks that remains when the entire sentence has been processed
yields the set of parse trees for the sentence.

The various stacks are synchronized on shift actions. That is, all possible
reductions are carried out until each stack is to do a shift. In Figure 12.7 the set
of stacks is shown that is obtained after parsing a (pre�x of a) string

*n *v *det *n *prep *det *n *prep *det *n *prep :

The topmost 5 stacks are identical, but correspond to the 5 di�erent parses for a
sentence ending with two PP s. This is clearly an ine�cient way of working. If
two stacks have the same top state, they will behave identical upto the moment
that this state is removed by a reduction. Hence identical top parts of stacks can
be merged. Thus we obtain a tree-structured stack, shown in Figure 12.8. In this
case there is only a single top state, in general there may be several tops states.

A second optimization is possible. We could also share bottom parts of the
stacks, when a copy of a stack has to be made. Thus we obtain the graph-structured
stack as shown in Figure 12.9. Note that each single stack in Figure 12.7 corre-
sponds to a path in the tree in Figure 12.8 and to a path in the graph in Figure 12.9.

All three �gures contain the same information.

In order to formally de�ne a generalized LR parser with a graph-structured
stack, one has to keep in mind that the graph is in fact a compact representation
of a set of stacks de�ned by the paths in the graph. Each stack is operated by
its own nondeterministic LR parser; all parsers synchronize on shifts. Hence it
is is clear how to derive a de�nition of a GLR parser from the de�nition of a

12.4 Tomita's algorithm 283

LR(0) items action table goto table

*d *n *v *p $ NP VP PP S

0

S0!�S$
S!�NP VP

S!�S PP

NP!�*n

NP!�*det *n

NP!�NP PP

sh3 sh4 2 1

1
S0!S�$
S!S�PP

PP!�*prep NP

sh6 acc 5

2

S!NP�VP

NP!NP�PP

VP!�*v NP

PP!�*prep NP

sh7 sh6 8 9

3 NP!*det�*n sh10

4 NP!*n� re3 re3 re3

5 S!S PP � re2 re2

6

PP!*prep�NP

NP!�*n

NP!�*det *n

NP!�NP PP

sh3 sh4 11

7

VP!*v �NP

NP!�*n

NP!�*det *n

NP!�NP PP

sh3 sh4 12

8 S!NP VP� re1 re1

9 NP!NP PP � re5 re5 re5

10 NP!*det *n� re4 re4 re4

11
PP!*prep NP�

NP!NP�PP

PP!�*prep NP

re6
re6
sh6

re6 9

12
VP!*v NP�

NP!NP�PP

PP!�*prep NP

re7
re7
sh6

re7 9

Figure 12.6: A parsing table for G4

284 12. Generalized LR parsing

j0 S j1 *p j6

j0 S j1 *p j6

j0 S j1 *p j6

j0 S j1 *p j6

j0 S j1 *p j6

j0 S j1 *p j6 NP j11 *p j6

j0 S j1 *p j6 NP j11 *p j6

j0 NP j2 *v j7 NP j12 *p j6 NP j11 *p j6

j0 NP j2 *v j7 NP j12 *p j6 NP j11 *p j6 NP j11 *p j6

j0 S j1 *p j6 NP j11 *p j6 NP j11 *p j6

j0 NP j2 *v j7 NP j12 *p j6 NP j11 *p j6

j0 S j1 *p j6 NP j11 *p j6

j0 NP j2 *v j7 NP j12 *p j6

j0 NP j2 *v j7 NP j12 *p j6

Figure 12.7: Maintaining a set of stacks

12.4 Tomita's algorithm 285

j0 S
C

C

C

C

C

C

C
C

j0 S
B

B

B

B

B
B

j0 S
A

A

A
A

j0 S
@
@j0 S j1

C

C

C

C

CCj0 S
J
Jj0 S j1

J
Jj0 NP j2 *v j7 NP j12 *p j6 NP j11 *p j6

j0 NP j2 *v j7 NP j12 *p j6 NP j11

j0 S j1

j0 NP j2 *v j7 NP j12 *p j6 NP
�

�

�

�

��

j0 S j1

j0 NP j2 *v j7 NP j12

�

�

�

�

�

�

�

�

�
�

j0 NP j2 *v j7 NP

Figure 12.8: A tree structured stack

286 12. Generalized LR parsing

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

S
C

C

C

C

C

C

C

C

S
B

B

B

B

B
B

�

�

�

�

�

�

�

�

�

��

S
A

A

A
A

�
�

�
�

�
�

�
�

�
�

�
��

S
@
@

�
�

�
�

�
�

�
�

�
�

�
��

S j1

C

C

C

C

CC
�������������

S
J
J

��������

S j1

J
Jj0

J
J

NP j12 *p j6 NP j11 *p j6

NP j2 *v j7 NP j12 *p j6 NP j11

A

A

A
A

S j1

J
J

NP�

�

�
�

A

A

A
A

NP j12

�

�

�

�

��

B

B

B

B

B
B

NP

Figure 12.9: A graph structured stack

12.4 Tomita's algorithm 287

deterministic LR parser. The result is rather complicated, however, and we do not
take the trouble to write it down. In Section 12.5 a formal de�nition is given of
an optimized version of the GLR parser that will be discussed next.

So far we have only considered recognition of a sentence by a GLR parser. In
order to yield a forest of parse trees, we have to keep some additional adminis-
tration. We will maintain a parse list of nodes that occur in a the parse forest
with pointers to their daughter nodes. To that end, the algorithm is modi�ed as
follows.

� Upon a shift, the terminal that is shifted is added to the parse list. The
symbol vertex is labelled with the index in the parse list, rather than with
the symbol itself.

� Similarly, upon a reduce, an entry into the parse list is made for the left-
hand side symbol of the reduced production. A list of pointers to its daughter
nodes (the just removed indices of right-hand side symbols) is contained in
the parse list entry.

Figure 12.10 shows the parse list corresponding to the shared forest of \I saw a

man with a telescope".

0 [*n \I"]
1 [NP (0)] 9 [*det \a"]
2 [*v \saw"] 10 [*n \telescope"]
3 [*det \a"] 11 [NP (9 10)]
4 [*n \man"] 12 [PP (8 11)]
5 [NP (3 4)] 13 [NP (5 12)]
6 [VP (2 5)] 14 [VP (2 13)]
7 [S (1 6)] 15 [S (1 14)]
8 [*prep \with"] 16 [S (7 12)]

Figure 12.10: List representation of a shared forest

When a sentence has n parse trees, then the shared forest will have n root
nodes. The shared forest of the 5 parse trees of the sentence \I saw a man in the

park with a telescope" is shown in Figure 12.11. But, just as we share bottom
parts of parse trees, we could also share top parts of parse trees. If a nonterminal
symbol rewrites to the same part of the sentence in di�erent ways, it needs to be
represented only once. The di�erent nodes in the shared forest are grouped into a
single so-called packed node that comprises several sub-nodes. This is illustrated
in Figure 12.12, where packed nodes are represented by rectangles and sub-nodes
by symbols contained in the rectangle. The graph structure that is obtained in
this way is called a packed shared forest .

288 12. Generalized LR parsing

I saw a man in the park with a telescope

�n �v �d �n �p �d �n �p �d �n

NP NP

�
�

Q
Q

NP

�
�

Q
Q

NP

�
�

Q
Q

VP

�

�

�
�

Q
Q

PP

�

�

�
�

Q
Q

PP

�

�

�
�

Q
Q

S
�

�
�

�
��

Q
Q

NP
�

�
�

�
�

�
�

Q
Q

NP
�

�
�

�
�

�
�

Q
Q

PP

�

�

�

�

�

��
�

�
��

H
HH

VP

�
�

��

�
�

H
H
H
HH

NP
�

�
�

�
�

�
�

H
H
HH

J
J

C

CC

NP

�
�

�
�

�
�

�
��

�
�������

��

S

�

�

�
�

�
�

@

@@

S

�

�

�

�

H
HH

@

@

@
@

B

B

B
B

VP

�
�

�
�

�
�

�
�

�
��

�

�

�
�

�
�

��

Q
Q

VP

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
����

Q
Q

S
���� @

@

@

@

@

@

@

@
@XXXXXXX

S
���� @

@

@

@

@

@

@

@
@PPPPPP

S
�

�
��

�

�

�
�

�
�

��

@

@

@

@
@PPPP

S
�

�
������������

�

�

�
�

�

�

�

�
�

PPPP

S
�

�
�

������������

�

�
�

�

�

�

�
�

PPPP

Figure 12.11: A more complicated shared forest

I saw a man in the park with a telescope

�n �v �d �n �p �d �n �p �d �n

NP NP

�
�

Q
Q

NP

�
�

Q
Q

NP

�
�

Q
Q

VP

�

�

�
�

Q
Q

PP

�

�

�
�

Q
Q

PP

�

�

�
�

Q
Q

S
�

�
�

�
��

Q
Q

NP
�

�
�

�
�

�
�

Q
Q

NP
�

�
�

�
�

�
�

Q
Q

PP

�

�

�

�

�

��
�

�
��

H
HH

VP

�
�

��

�
�

H
H
H
HH

NP
�

�
�

�
�

�
�

H
H
HH

J
J

C

CC

NP

�
�

�
�

�
�

�
�
�

�
�������

��

S

�

�

�
�

�
�

@

@@

S

�

�

�

�

H
HH

@

@

@
@

B

B

B
B

VP

�
�

�
�

�
�

�
�

�
�

�
�

�

��
�

�
��

Q
Q

S
���� @

@

@

@

@

@

@
@
H
H
HHPPPP

S
�

�
��

�

�

�
�

�
�

��

@

@

@

@
@PPPP

S
�

�
������������

�

��

�

�

�

�

�
�

PPPP

Figure 12.12: A packed shared forest

12.4 Tomita's algorithm 289

The shared forest (represented by a parse list) in Figure 12.10 had two root
nodes. In order to obtain a packed shared forest, the two nodes

15 [S (1 14)]
16 [S (7 12)]

have to be replaced by a single node

15 [S (1 14) (7 12)].

We need to adapt the algorithm, so as to make sure that the a packed node in the
packed shared forest corresponds to a symbol node in the graph-structured stack.

� Whenever a state vertex is preceded by several symbol vertices that refer to
(di�erent entries of) the same grammar symbol, these symbol vertices are
merged into a single vertex. The corresponding entries in the parse list are
merged into a single entry, representing a packed node in the packed shared

forest.

This is illustrated in Figure 12.13.

J

JJ

n1

n2

n3

A

A

A
J

JJ n4 B
n5

J

JJ

n1

n2

n3

J

JJ

A

n4 B
n5

Figure 12.13: Symbol vertices are merged into a single vertex

In a graph-theoretically more elegant description, a packed shared forest should
be de�ned as a bipartite directed graph: a graph with two distinct types of nodes
and edges only between nodes of di�erent types. To that end, assume that every
node is a packed node. \Ordinary" nodes, then, are packed nodes with only
a single sub-node. Moreover, consider packed nodes and sub-nodes as separate
nodes; a packed node has edges to each of its sub-nodes. A sub-node has edges to
its packed successor nodes. Such an approach is taken by Rekers [1992], who uses
symbol nodes for the packed nodes and rule nodes, labelled with the applicable
rewrite rule, for the sub-nodes. Based on this bipartite graph structure, Rekers
optimizes the packing of the forest and extends his GLR parser to the class of

290 12. Generalized LR parsing

reduced context-free grammars (Tomita's algorithm cannot handle certain kinds
of grammars, cf. Section 12.6).

For the current exposition, we will follow the informal approach of Tomita.

As an example, we will look at a few interesting situations that occur while
parsing \I saw a man in the park with a telescope." Each �gure contains

� the graph-structured stack;

� at each top of the stack, the next action(s) that have to be performed;

� the parse list representation of the packed shared forest.

We have labelled the parse list with letters, rather than numbers, because numbers
are used in the graph structured stack to indicate states.

n0 b
n2 c n7 f n12

�
sh6
re7

�

(a) [*n \I"]
(b) [NP (a)]

(c) [*v \saw"]
(d) [*det \a"]
(e) [*n \man"]

(f) [NP (d; e)]

Figure 12.14: \I saw a man : : :"

The �rst ambiguity occurs when \I saw a man" has been processed, cf. Figure 12.14.
In the parsing table in Figure 12.6 we �nd action [12,*prep] = fsh6, re7g. Hence,
while we await the shift on one branch of the stack, reductions of VP!*v NP and
S!NP VP are carried out on another branch, cf. Figure 12.15.

Both tops of the stack are to shift to state 6 now, and the branches can be

merged. After shifting *prep, *det , and *n , and reducing NP!*det *n the situa-
tion in Figure 12.16 is obtained.

As we carry out re6, we have to add a PP to the state vertices that are 4
positions down from the top of the stack. We �nd two di�erent state vertices
(labelled 12 and 1), and both must be extended with a PP symbol vertex. The
result of this reduction is shown in Figure 12.17. Note that goto[12,PP] = 9 and
goto[1,PP] = 5, hence the two new branches of the stacks cannot be merged. But,
as both branches contain the same PP \in the park", the two symbol vertices are
labelled with the same entry in the parse list.

After all further reductions are carried out, and two S vertices covering \I saw
a man in the park" are merged into a single vertex, we get the situation that is
shown in Figure 12.18.

12.4 Tomita's algorithm 291

n0 b
n2 c n7 f n12 [sh6]

@

@@

h
n1 [sh6]

(a) [*n \I"] (g) [VP (c; f)]
(b) [NP (a)] (h) [S (b; g)]
(c) [*v \saw"]
(d) [*det \a"]
(e) [*n \man"]
(f) [NP (d; e)]

Figure 12.15: \I saw a man : : :"

n0 b
n2 c n7 f n12 i n6 l

n11
�

sh6
re6

�

@

@@

h n1

(a) [*n \I"] (g) [VP (c; f)]
(b) [NP (a)] (h) [S (b; g)]

(c) [*v \saw"] (i) [*prep \in"]
(d) [*det \a"] (j) [*det \the"]

(e) [*n \man"] (k) [*n \park"]
(f) [NP (d; e)] (l) [NP (j; k)]

Figure 12.16: \I saw a man in the park : : :"

n0 b
n2 c n7 f n12 i n6 l

n11 [sh6]

J

JJ

m n9 [re5]

@

@

@

@

@

h n1

�

�

�

�
�

m n5 [re2]

(a) [*n \I"] (g) [VP (c; f)] (m) [PP (i; l)]
(b) [NP (a)] (h) [S (b; g)]
(c) [*v \saw"] (i) [*prep \in"]
(d) [*det \a"] (j) [*det \the"]

(e) [*n \man"] (k) [*n \park"]
(f) [NP (d; e)] (l) [NP (j; k)]

Figure 12.17: \I saw a man in the park : : :"

292 12. Generalized LR parsing

n0 b
n2 c n7 f n12 i n6 l

n11 [sh6]

J

JJ

n n12 [sh6]

@

@

@

@

@

h n12

�

�

�

�
�

A

A

A

A

A

A

A
A

p n1 [sh6]

(a) [*n \I"] (g) [VP (c; f)] (m) [PP (i; l)]

(b) [NP (a)] (h) [S (b; g)] (n) [NP (e;m)]
(c) [*v \saw"] (i) [*prep \in"] (o) [VP (c;n)]
(d) [*det \a"] (j) [*det \the"] (p) [S (b; o) (h;m)]
(e) [*n \man"] (k) [*n \park"]
(f) [NP (d; e)] (l) [NP (j; k)]

Figure 12.18: \I saw a man in the park : : :"

Parsing continues in similar fashion with the next PP \with a telescope". After
the last word has been shifted, branches of the stack synchronize on accept , rather
than shift. The �nal situation is shown in Figure 12.19.

n0 z n1 [acc]

(a) [*n \I"] (j) [*det \the"] (s) [*n \telescope"]

(b) [NP (a)] (k) [*n \park"] (t) [NP (r; s)]
(c) [*v \saw"] (l) [NP (j; k)] (u) [PP (q; t)]
(d) [*det \a"] (m) [PP (i; l)] (v) [NP (l; u)]

(e) [*n \man"] (n) [NP (e;m)] (w) [NP (n; u)]
(f) [NP (d; e)] (o) [VP (c;n)] (x) [PP (i; v)]
(g) [VP (c; f)] (p) [S (b; o) (h;m)] (y) [VP (c; w)]
(h) [S (b; g)] (q) [*prep \with"] (x) [S (b; y) (h; x) (p;w)]
(i) [*prep \in"] (r) [*det \a"]

Figure 12.19: \I saw a man in the park with a telescope."

12.5 A formal de�nition of Tomita's algorithm 293

12.5 A formal de�nition of Tomita's algorithm

We give a formal de�nition of Tomita's algorithm in the style of [Tomita, 1985].
The reason for writing out this de�nition is that it is a starting point for the formal
de�nition of our PBT algorithm in Chapter 13.

A minor error in Tomita's algorithm has been repaired. A set of top nodes,
rather than a single top node is returned. Di�erent nodes for a single constituent

cannot be shared when these lead to di�erent states of the parser. This may also
apply to roots of the parse tree. This enhancement is due to Lankhorst [1991],
who also give the following example. Take the following grammar

S0!S$
S!AA

A!a

A!":

The resulting parse list for a string a is:

1 [A] 4 [a] 7 [S (1; 5)]
2 [A] 5 [A (4)] 8 [A]
3 [S (1; 2)] 6 [A (4)] 9 [S (6; 8)]:

The result delivered by Tomita's original algorithm is node 9 as a root of the
parse forest, being the last node found by an accept action. Node 7 is also a root,
however, and therefore should also be delivered as result.

In the description of the algorithm the arrows are directed from right to left

(in the illustrations in the previous section). A top of the stack is a source of the
graph, the bottom of the stack is the sink . This is counterintuitive, perhaps, but
has some advantages for implementation.

In the formal description we use the following functions and global variables:

�: graph-structured stack. This is a directed, acyclic graph with a single leaf
node, v0, labelled with state number s0. � is initialized in parse and altered

in reducer, e-reducer, and shifter.

T : shared packed forest. This is a directed graph (V;E) in which each vertex
v 2 V may have more than one successor list hv; Li 2 E. Initialized in parse
and altered in reducer, e-reducer, and shifter.

r: the result. This is a set of vertices of T which refer to the roots of the parse
forest. Initialized in parse and altered in actor.

Ui;j: set of vertices of �; Ui;0 is created created when parsing ai, Ui;j with j > 0
when parsing the j-th " after ai.

294 12. Generalized LR parsing

A: subset of \active" vertices of Ui;j on which reductions and shift actions can
be carried out. A is initialized in parseword and altered in actor and
e-reducer.

R: set of edges to be reduced. Each element is a triple hv; x; pi with v 2 Ui;j ,
x 2 successors(v) and p a non-empty production of G. hv; x; pi 2 R means
that reduce p is to be applied on the path starting with the edge from v to
x. reducer will take care of it. R is initialized in parseword and altered
in actor and reducer.

Re: set of vertices on which an "-reduction is to be carried out. Each element
is a pair hv; pi with v 2 Ui;j and p and "-production. hv; pi 2 Re means
that reduce p is to be applied on the vertex v. e-reducer will carry out
this reduction. Re is initialized in parseword and altered in actor and
e-reducer.

Q: set of vertices to be shifted on. hv; si 2 Q means that shift s is to be carried
out on v. shifter will take care of this. Q is initialized in parseword and
altered in actor and shifter.

left(p): left-hand side of production p.

jpj: length of the right-hand side of production p.

state(v): takes a vertex in � as its argument and returns the state label of this
vertex.

symbol(x): takes a vertex in � as its argument and returns the symbol label of
this vertex. This label is a link to a vertex in T .

successors(v): takes a vertex in � as its argument and returns the set of all
vertices x in � such that there is an edge from v to x.

goto(s; A): looks up the goto table and returns a state number. s is a state
number and A is a grammar symbol.

action(s): looks up the action table and returns a set of actions. s is a state
number.

addsubnode(v; L): takes a vertex v in T and a successor list L as arguments and
adds hv; Li to E in T = (V;E).

The parser is de�ned by the following set of procedures

12.5 A formal de�nition of Tomita's algorithm 295

procedure parse(G; a1 : : :an)
begin

an+1 := $;
� := ;; T := ;; r := ;;
create in � a vertex v0 labelled s0;
U0;0 := fv0g;
for i := 0 to n do parseword(i) od;
return r, the set of roots of the parse forest

end parse;

procedure parseword(i)
begin

j := 0; A := Ui;0;
Q := ;; R := ;; Re := ;;
repeat

if A 6= ; then actor

elseif R 6= ; then reducer

elseif Re 6= ; then e-reducer

fi

until A = ; and R = ; and Re = ;;
shifter

end parseword;

procedure actor

begin

remove one element v from A;
for all � 2 action(state(v))
do if � = accept

then r := r [fvg;
elseif � = shift

then Q := Q [fhv;goto(state(v); ai+1)ig
elseif � = reduce p and p is not an "-production

then for all x 2 successors(v)
do R := R [fhv; x; pig od

elseif � = reduce p and p is an "-production
then Re := Re [fhv; pig

fi

od

end actor;

296 12. Generalized LR parsing

procedure reducer

begin

remove one element hv; x; pi from R;
N := left(p);
for all y such that there is a path of length 2jpj � 2 from x to y
do L := (symbol(z1); : : : ; symbol(zjpj)); where

z1 = x1, zjpj = y and z2; : : : ; zjpj�1 are
symbol vertices on the path from x to y;

for all s such that
9w(w 2 successors(y) ^ goto(state(w); N) = s)

do W := fw j w 2 successors(y) ^
goto(state(w); N) = sg;

if 9u(u 2 Ui;j ^ state(u) = s)
then if there is an edge from u to a vertex z

such that successors(z) = W

then addsubnode(symbol(z); L)
else create in T a node m labelled N ;

addsubnode(m;L);
create in � a vertex z labelled m;
create in � an edge frome u to z;
for all w 2W

do create in � an edge from z to w od

if u 62 A

then for all q such that
reduce q 2 action(s)

and q is not an "-production
do R := R [fhu; z; qig od

fi fi

else create in T a node m labelled N ;
addsubnode(m;L);
create in � two vertices u and z

labelled s and m, respectively ;
create in � an edge from u to z;
for all w 2W

do create in � and edge from z to w od;
Ui;j := Ui;j [fwg;
A := A [fwg

fi

od od

end reducer;

12.5 A formal de�nition of Tomita's algorithm 297

procedure e-reducer

begin

Ui;j+1 := ;;
for all s such that 9hv; pi 2 Re such that goto(state(v); left(p)) = s

do N := left(p);
create in T a node m labelled N ;
addsubnode(m;nil);
create in � two vertices u and z labelled s and m, respectively;
create in � and edge from u to z;
Ui;j+1 := Ui;j+1 [fwg;
for all hv; pi 2 Re such that goto(state(v); left(p)) = s

do create in � an edge from x to v od;
Re := ;;
A := Uj+1;
j := j + 1

od

end e-reducer;

procedure shifter

begin

Ui+1;0 := ;;
create in T a node m labelled ai+1;
for all s such that 9v(hv; si 2 Q)
do create in � two vertices x and w labelled s and m, respectively;

create in � and edge from w to x;
Ui+1;0 := Ui+1;0 [fwg;
for all v such that hv; si 2 Q

do create an edge from x to v od
od

end shifter;

298 12. Generalized LR parsing

12.6 Pros and cons of Tomita's algorithm

We will �rst review the e�ciency of Tomita's algorithm, and then discuss some
limitations and extensions.

Tomita claims his algorithm to be �ve times faster than Earley's original algo-
rithm [Earley, 1970] and two times faster than the improved version of Graham,
Harrison and Ruzzo [1980], based on experiments with context-free grammars for
(parts of) the English language. A worst-case analysis is somewhat more involved.
Earley's algorithm has O(n3) worst-case complexity for a sentence of length n.
The worst-case complexity of Tomita's algorithm depends on the length of the
right-hand side of the grammar. Let % be the length of the longest right-hand side
of a production. Then the worst-case complexity of Tomita's algorithm is O(n%+1).
Johnson [1989] gives an argument for this complexity based on the number of edges
in a packed shared forest for very ambiguous grammars. A constructive way to
derive this complexity bound is the following.

We can divide the set of state vertices U in the graph-structured stack at
any time into subsets U0; : : : ; Uk, where k is the number of words that has been
scanned. Ui contains those state vertices that have been created between scanning
word i and word i + 1. The size of Ui is limited by a constant (the number of
states). Suppose, now, that a reduction has to be carried out on a top of the stack
v 2 Uk, for a production with % right-hand side symbols. Then all paths from
v with length 2% have to be followed, in order to determine the ancestors

2 (the
vertices onto which the left-hand side symbol has to be shifted).

How many paths of length 2% from v could exist? Because we have merged
corresponding symbol vertices preceding a state vertex, there is only one edge
from each state vertex to its preceding symbol vertex. Thus we ignore the symbol
vertices and move directly from state vertex to state vertex. Retracing the right-

hand side, we have to move the dot back over all % symbols. When the grammar
is su�ciently ambiguous, for a state vertex in Uj its successor state vertex can be
located in any Ui with 0 � i � j. Starting in Uk, and doing this % times, we �nd
O(k%) possibilities. Hence the total cost for the reduction of a vertex in Uk are
O(k%).

As the size of Uk is O(1), all reductions in Uk can be handled in O(k%) time.
As we have to do this for k ranging from 0 to n, we �nd a total time complexity
for all n+ 1 positions of O(n%+1).

It has been remarked by Kipps [1989] that a Tomita recognizer can be con-
structed with a worst-case complexity O(n3). Using a more sophisticated graph
search algorithm, the O(n) ancestors of a vertex that has to be reduced can be

2These are called ancestors by Kipps [1989]. Because the edges of the graphs point in reverse
direction, (cf. Section 12.5, which follows Tomita [1985] in that respect), in graph theory termi-

nology these should be called descendants. Ancestor is the more appropriate name, it seems,
because an ancestor is older (put on the stack earlier) than the vertex of which it is an ancestor.

12.6 Pros and cons of Tomita's algorithm 299

found in O(n2) time. The price for a reduction of the worst-case complexity is
high, however. On any grammar that is not nearly worst-case, the computing time
will only increase because of the extra administration and the unnecessary sophis-
tication of the graph search algorithm. Also, the problem that the packed shared
forest may extend beyond O(n3) is not solved. But the same problem applies to
Earley's algorithm when a packed shared forest has to be constructed from the
completed chart. In order to make sure that the size of the forest is O(n3) in the
worst case, one can share corresponding pre�xes of right-hand sides as well; cf.
Leermakers [1991] and Billot and Lang [1989].

From the above discussion it is clear that Tomita's algorithm is superior to Ear-
ley and GHR on \easy" grammars, but inferior on \di�cult" grammars. Tomita
claims that all natural language grammars are easy, i.e., almost LR and almost "-
free. We do not know of an empirical study that has systematically tested Tomita's
algorithm against GHR for a large variety of natural language grammars.

Not all context-free grammars can be parsed by Tomita's algorithm. There are
two classes of grammars for which the algorithm doesn't �nish: cyclic grammars
and hidden left-recursive grammars. We will briey discuss each case.

A grammar is cyclic if A)+A for some nonterminal A 2 N . The problem is
clear: whenever an A is put onto the stack, no further shift takes place as the
algorithm doesn't stop reducing ever more A's.

A more subtle class of grammars that busts the algorithm are hidden left-

recursive grammars.3 A grammar is hidden left-recursive if there are A;B; �; �
such that

(i) A)�B�A�;

(ii) B�)�":

When �)�" the grammar is cyclic, but in general it is not necessarily the case
that � rewrites to ". Consider the grammar, de�ned by the productions

fS!ASb; S!a; A!"g:

The parser sees an a as the �rst word. How many times should A!" be reduced

before we do the �rst shift? In order to deal with arbitrary sentences of the form
ab�, an in�nite amount of shifts is needed. This is reected by the parsing table
for this grammar, which remains in the same state after reducing A!".

One could wonder whether hidden left-recursive grammars are relevant to nat-
ural language parsing. Nederhof and Sarbo [1993] report to have found a grammar

3The term hidden left-recursive is due to Nederhof [1993]. Nozohoor-Farshi [1989] called such
grammars ill-formed , for want of a better word. In [Lankhorst and Sikkel, 1991], [Sikkel and

Lankhorst, 1992] we called them pseudo-cyclic.

300 12. Generalized LR parsing

for Dutch, the Deltra grammar developed at the Delft University of Technology
[Schoorl and Belder, 1990], that has a hidden left-recursive context-free backbone.

The problem with hidden left-recursive grammars, which was overlooked by
Tomita [1985], has been solved by Nozohoor-Farshi [1989]. He introduces a cycle
in the stack which can be unrolled as many times as needed. A more fundamental
solution is proposed by Nederhof and Sarbo [1993]. They leave the stack acyclic
and make it optional whether the stack contains nullable right-hand side symbols
in a reduction. Rekers [1992] has eliminated the problem of hidden left-recursion
in yet another way, by optimizing the sharing of the graph-structured stack. The
in�nite sequence of A's, all describe the empty string at position 0. Hence, in
Rekers' optimally shared stack, an in�nite sequence of state vertices that would
be generated by Tomita collapses into a single state vertex. Like the algorithms of
Nederhof and Sarbo [1993] and Rekers [1992], the The PBT algorithm that will be
discussed in Chapter 13 can deal with arbitrary (reduced) context-free grammars.

Generalized LR parsing has been extended to context-sensitive grammars by

Harkema and Tomita [1991]. Other recent papers on Tomita's algorithm can be
found in [Tomita, 1991] and [Heemels et al., 1991].

12.7 An annotated version of Tomita's algorithm

We annotate Tomita's parse stack with Earley items. For a fair comparison with
the Earley chart parser, we use a generalized LR(0) parser, without look-ahead. In
Section 12.8, subsequently, we will de�ne parsing schemata for LR(0) and SLR(1),
based on the items with which the stack is annotated here.

The canonical Tomita parser is based on (generalized) SLR(1). We start with
a slightly di�erent Tomita parser, based on LR(0), because for this one it is easiest
to derive a parsing schema. Moreover, the LR(0) Tomita parser is the basis for

constructing the parallel Tomita parser in the next chapter.

There are a few subtle di�erence between LR(0) parsers on the one hand and all

other LR parsers on the other hand. No look-ahead is used, hence the type of the
next action is determined only by the top state of the stack. If shift is a possible
action, the next state depends also on the particular symbol that is shifted. To
that end, the goto table covers nonterminal and terminal symbols alike. Whenever
a symbol is pushed onto the stack, the combination of state and symbol determines
the next state. The error action no longer exists now. From the construction of
the parsing table it follows that each state has some valid action. Errors occur,
however, when a shift is done but there is no next state for the symbol that is
shifted. Then the shift is cancelled and the branch of the stack on which a shift
was tried can be removed. An annotated LR(0) parsing table for grammar G4 is
shown in Figure 12.20. Note that the accept is in fact disguised as a shift . If a shift
is decided upon and the goto table yield acc, the parser moves to a special accept

12.7 An annotated version of Tomita's algorithm 301

goto table

LR(0) items action *d *n *v *p $ NP VP PP S

0

S0!�S$
S!�NP VP

S!�S PP

NP!�*n

NP!�*det *n

NP!�NP PP

sh 3 4 2 1

1
S0!S�$
S!S�PP

PP!�*prep NP

sh 6 acc 5

2

S!NP �VP

NP!NP�PP

VP!�*v NP

PP!�*prep NP

sh 7 6 8 9

3 NP!*det�*n sh 10

4 NP!*n� re3

5 S!S PP � re2

6

PP!*prep�NP

NP!�*n

NP!�*det *n

NP!�NP PP

sh 3 4 11

7

VP!*v �NP

NP!�*n

NP!�*det *n

NP!�NP PP

sh 3 4 12

8 S!NP VP � re1

9 NP!NP PP� re5

10 NP!*det *n� re4

11
PP!*prep NP�

NP!NP�PP

PP!�*prep NP

re6
sh

6 9

12
VP!*v NP �

NP!NP�PP

PP!�*prep NP

re7
sh

6 9

Figure 12.20: An annotated LR(0) parsing table for G4

302 12. Generalized LR parsing

state that is not shown in the parsing table. Alternatively, one could explicitly
include a state fS0!S$�g and o�er accept as the only possible action in that state.

The class of deterministic SLR(1) grammars is strictly larger than the class
of deterministic LR(0) grammars. This is exempli�ed by G3 (cf. Figure 12.1 on
page 275). The SLR(1) table has no ambiguities. In an LR(0) table, state 5 would
o�er both sh and re5. Without look-ahead one cannot deterministically decide
whether the verb has a direct object.

Having introduced the annotated LR(0) parsing table, we can now give an
explicit correspondence between the parse stack and LR(0) items on the one hand
and Earley-type items on the other hand. The latter ones, having the general
format [A!���; i; j] are called marked LR(0) items in this context. We will �rst
introduce an annotated LR(0) Tomita parser that incorporates marked items into
its parse stack, and then derive a parsing schema for the domain of marked items
that is implemented by an LR(0) Tomita parser.

Let G be a context-free grammar and G0 its augmented grammar. The set of
marked items for G0 is de�ned by

ILR(0) = f[A!���; i; j] j A!�� 2 P 0 ^ 0 � i � jg: (12.17)

The graph-structured stack can be described as a bipartite directed graph
� = (U; Y ; E), where U is the set of state vertices, Y the set of symbol vertices,
andE the set of edges connecting vertices to one another. For the sake of simplicity,
we run the algorithm only as a recognizer. Hence, symbol vertices are labelled with
grammar symbols and no parse list is produced. We write symbol(y) for the label
of a symbol vertex y 2 Y . We write state(u) for the state with which a state
vertex u 2 U is labelled. The set of state vertices U that is used for parsing a
sentence a1 : : :an can be partitioned into U0 [: : : [Un. The subset Ui contains
those state vertices that are put onto the stack when the words ai+1 : : :an$ remain

on the input.

The Annotated LR(0) Tomita algorithm is obtained from the LR(0) Tomita
algorithm by two simple changes in the way the stack is maintained. Firstly, when
a reduction is carried out there is no need to delete the part of the stack that is
being reduced. We can simply leave it in the graph and start a new branch from
the appropriate state vertex. It is remarked by Tomita [1985] that this does not
change the algorithm in any way (and in fact Tomita doesn't prune branches of
the graph either), only the presentation of what a graph-structured stack looks
like is di�erent.

Secondly, we will label the state vertices with sets of marked items, denoted
items(u) for any u 2 Uj � U . For every LR(0) item A!��� 2 state(u), we
add one (sometimes a few) marked item [A!���; i; j] to items(u). We have to
determine, however, which position markers should be contained in the marked
item. This is done as follows.

12.7 An annotated version of Tomita's algorithm 303

j0

*n

NP

j4

j2 *v j7 *d j3

�

�

�

�

�

�
�

VP

*n

J

J

J
J

NP

J

J

J

J

J

J

J

J

J

JJ

S

j8

j10

j12

j1

S'!�S $,0,0
S!�NPVP,0,0
S!�SPP,0,0
NP!�*n,0,0

NP!�*d*n,0,0
NP!�NPPP,0,0

S!NP�VP,0,1
S!NP�PP,0,1

VP!�*vNP,1,1
PP!�*pNP,1,1

NP!*n�,0,1

VP!*v�NP,1,2
NP!�*d*n,2,2

NP!�*n,2,2
NP!�NPPP,2,2

NP!*d�*n,2,3

S!NPVP�,0,4

NP!*d*n�,2,4

NP!NP�PP,2,4
VP!*vNP�,1,4
PP!�*pNP,4,4

S'!S�$,0,4
S!S�PP,0,4

PP!�*pNP,4,4

Figure 12.21: Annotated stack for I saw a man: : :

304 12. Generalized LR parsing

j0

�

��

*n

NP

j4

j2 *v j7 *d j3

�

�

�
�

VP

*n

J
J

NP

@

@

@
@

S

j8

j10

j12

j1

*p j6 *d j3

VP

�

�
�

�
�

�
�

�
�

�
��

NP

�
�

�
�

�
�

PP

*n

Q
Q

Q
Q

Q
Q

NP

A

A

A

A

A

A

A

A
A

PP

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

JJ

S

j8

j12

j9

j10

j11

j5

j1

PP!*p�NP,4,5
NP!�*n,5,5

NP!�*d*n,5,5
NP!�NPPP,5,5

NP!*d�*n,5,6

S!NPVP�,0,7

VP!*vNP�,1,7
NP!NP�PP,2,7
PP!�*pNP,7,7

NP!NPPP�,2,7

NP!*d*n�,5,7

PP!*pNP�,4,7
NP!NP�PP,5,7
PP!�*pNP,7,7

S!SPP�,0,7

S'!S�$,0,7
S!S�PP,0,7

PP!�*pNP,7,7

Figure 12.22: Annotated stack for : : : with a telescope : : :

12.8 Parsing Schemata for LR(0) and SLR(1) 305

� The right position marker corresponds to the subset Uj of U .
That is, if [A!���; i; j] 2 items(u) then u 2 Uj .

� For initial items, the left and right position marker coincide.
That is, if [A!��; i; j] 2 items(u) then i = j.

� For non-initial items, the left position marker is determined as follows.
Let A!�X�� 2 state(u) then u is the predecessor4 of a symbol vertex y

with symbol(y) = X. For each state vertex v that is a successor of y it
holds that items(v) contains some Earley item [A!��X�; i; k].
For all successors v of y and for all values of i such that [A!�X�; i; k] 2
items(v), an Earley item [A!X��; i; j] is added to items(u).

As output of the annotated Tomita parser we will consider the marked LR(0)
items that appear in the �nal graph-structured stack, rather than the parse list.
In Figure 12.21 and Figure 12.22 the annotated graph-structured stack is shown
for \I saw a man with a telescope".

De�nition 12.1 (LR(0)-viable items)
A marked LR(0) item [A!���; i; j] is called LR(0)-viable for a string a1 : : : an if,
there is some z 2 �� such that

(i) S0)�a1 : : :aiAz$,

(ii) �)�ai+1 : : : aj. 2

In the sequel we will prove that a �nal stack of the annotated LR(0) Tomita parser
contains all viable marked items and no other ones. But �rst we recapitulate (in
a much simpli�ed form) the essential notions of parsing schemata and parsing
systems.

12.8 Parsing Schemata for LR(0) and SLR(1)

A parsing system for some grammarG and string a1 : : : an is a triple P= hI;H;Di

with I a set of items, H an initial set of items and D a set of deduction steps that
allow to derive new items from already known items. The set of initial items H
encodes the sentence that is to be parsed. For a sentence a1 : : :an we take

H = f[ai; 0; 1]; : : : ; [an; n� 1; n]; [$; n; n+ 1]g: (12.18)

4We assume here that edges are directed from right to left, i.e., from the tops of the stack
towards the root. Because of the way in which the stack is constructed (and the standard way
to depict a stack with the root at the left and the tops at the right) this seems the wrong way

around. This \reversed" direction of edges is chosen because of some implementations details
that do not matter right here. We stick to this terminologyhere to be compatible with the formal

de�nition of Tomita's algorithm that has been presented in 12.5.

306 12. Generalized LR parsing

The item set I for an LR(0) parsing system has been speci�ed in (12.17) on page
302. Deduction steps in D are of the form

�1; : : : ; �k ` �:

The items �1; : : : ; �k are called the antecedents and the item � is called the conse-
quent of a deduction step. If all antecedents of a deduction step are recognized by a
parser, then the consequent should also be recognized. An item [A!���; i; j] 2 I

is valid in P if it can be recognized from the initial set H by applying a sequence
of deduction steps.

A parsing system P is de�ned for a particular grammar and string. An unin-

stantiated parsing system only de�nes I and D for a particular grammar G. Such
a system can be instantiated by adding a set of hypotheses for a particular string
a1 : : : an. A parsing schema is de�ned for a class of grammars. For each grammar
in this class, it de�nes an uninstantiated parsing system.

Let us now de�ne a parsing schema LR(0), abstracting from all the algo-
rithmic details of an annotated LR(0) Tomita parser. The schema is de�ned for
reduced acyclic context-free grammars without hidden left-recursion. We specify
the parsing schema by de�ning a parsing system PLR(0) = hILR(0);H;DLR(0)i for
an arbitrary grammarG and string a1 : : :an. ILR(0) and H have already been de-
�ned above, so we only have to determine the set of deduction steps DLR(0) that
is implemented by our annotated Tomita parser. D can be divided into distinct
subsets.

Initial LR(0) items are contained in a state of the parser because they are
contained in the closure of some non-initial item. Similarly, initial marked items
in items(u) of some state vertex u can be computed by a closure operation on
marked items. The set of deduction steps that describes all closures is speci�ed
by:5

DCl = f[A!��B�; i; j] ` [B!�; j; j]g: (12.19)

If the string in (12.19) starts with a nonterminal, then [B!�; j; j] is the an-
tecedent of another closure step. Hence we do not need to specify explicitly that
the transitive closure has to be taken, as in the algorithm in Figure 12.2.

In order to start the parser, we need an initial deduction step without an-
tecedents:

DInit = f ` [S0!�S$; 0; 0]g: (12.20)

The other marked items of the initial vertex u0 can be deduced from [S0!�S$; 0; 0]
by deduction steps in DCl.

5A remark on the notation of (12.19): all items that occur in a deduction step must, by
de�nition, be taken from I or H. Hence conditions like, e.g., B! 2 P 0 need not be stated

again. So, in this case, the entire right part of the usual set notation f: : : j : : :g is absent.

12.8 Parsing Schemata for LR(0) and SLR(1) 307

A shift action is feasible in a state that contains an LR(0) item A!��a�. I.e.,
a shift is possible from a state vertex having a marked item [A!��a�; i; j]. The
shift is successful for this particular item only if the next word of input is indeed
a. Thus we obtain the set of shift deduction steps:

DSh = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; j; j + 1]g: (12.21)

Finally we turn to the most di�cult case, the reduction. A reduce action is possible
in a state that contains a �nal LR(0) item, i.e., a reduce is possible from a state
vertex that contains a �nal marked item. Let [B!�; i; j] 2 state(u) for some
u, with = X1 : : :Xk. Then we can retrace a path of symbol and state vertices
labelled with (among others)

Xk; [B!X1 : : :Xk�1�Xk; i; jk�1]; : : : ; X1; [B!�X1 : : :Xk; i; i]:

Let v be the vertex such that [B!�; i; i] 2 items(v). Then there must be a
non-�nal marked item in the same item set such that [B!�; i; i] can be derived
from it by closure steps. Assume

[A!��B�; h; i] 2 items(v)

Then from v we have to extend the stack with a symbol vertex labelled B that
has v as its successor and a predecessor state vertex w such that [A!�B��; h; j] 2
items(w). All the intermediate vertices that were retraced in order to �nd v are
not essential for the reduction.6 Hence, the essential properties of a reduction are
covered by the set of deduction steps

DRe = f[A!��B�; h; i]; [B!�; i; j] ` [A!�B��; h; j]g: (12.22)

Now we have enumerated all deduction steps that specify how marked items are
added to the graph-structured stack of the annotated LR(0) Tomita parser. This
is summarized in the following parsing schema.

Schema 12.2 (LR(0))
The parsing schema LR(0) is de�ned for reduced acyclic context-free grammars
without hidden left-recursion. Let G be such a grammar and G0 the augmented
grammar. A parsing system

PLR(0) = hILR(0);H;DLR(0)i

is de�ned by

6These vertices are not essential in then sense that they provide merely a data structure that
allow to retrieve vertices v satisfying [A!��B�;h; i] 2 items(v). Data structures are abstracted
from in parsing schemata, hence the steps that need to be taken to �nd such vertices v do not show
up in the deduction step. Searching the intermediate vertices is essential for the (in)e�ciency of
Tomita's algorithm when a massively ambiguous grammar with long right-hand sides is used, cf.
Section 12.6. I.e., for such grammars a graph-structured stack is an ine�cient implementation
of the schema LR(0).

308 12. Generalized LR parsing

ILR(0) = f[A!���; i; j] j A!�� 2 P 0 ^ 0 � i � jg;

DInit = f ` [S0!�S$; 0; 0]g;

DCl = f[A!��B�; i; j] ` [B!�; j; j]g;

DSh = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; j; j + 1]g;

DRe = f[A!��B�; h; i]; [B!�; i; j] ` [A!�B��; h; j]g;

DLR(0) = DInit [DCl [DSh [DRe;

The set of hypotheses H depends on the input string, cf. (12.18) on page 305. 2

It is not a coincidence that this schema is very similar to the schema Earley

de�ned in Example 4.32. The predict , scan and complete deduction steps in the
Earley schema correspond to the closure, shift and reduce steps here. There are
only two inessential di�erences between the parsing schemata Earley and LR(0):

� Earley is de�ned for all context-free grammars, whereas LR(0) is only
de�ned for reduced acyclic grammars without hidden left-recursion.

� LR(0) augments the grammar with an extra production S0!S$.

Corollary 12.3

Amarked LR(0) item is valid in LR(0) for some grammarG and sentence a1 : : : an
if and only if the item is LR(0)-viable for G and a1 : : :an (cf. De�nition 12.1). 2

Next, we will de�ne a parsing schema for (generalized) SLR(1) by examining
the di�erences between the LR(0) and SLR(1) Tomita parser. Like in the LR(0)
case, we �rst de�ne a set of viable items that is to be recognized by the parsing
schema. It will turn out, however, that the viable items form a strict subset of the

valid items.

De�nition 12.4 (SLR(1)-viable items)
A marked LR(0) item [A!���; i; j] is called SLR(1)-viable for a string a1 : : : an
if there is a z 2 �� such that

(i) S0)�a1 : : :aiAz$,

(ii) �)�ai+1 : : :aj ,

(iii) aj+1 2 First(� Follow(A)), 2

(where � Follow(A) is the set of strings that is obtained by concatenating � with
each of the symbols in the set Follow(A)).
We have not de�ned an algorithm for the construction of an LR(0) table, but is
it clear from the examples how this should be done. The relation between the
SLR(1) and LR(0) tables is characterized as follows.

12.8 Parsing Schemata for LR(0) and SLR(1) 309

� sh s0 2 actionLR(0)[s] if and only if sh s0 2 actionSLR(1)[s; a] for some a 2 �0;

� re k 2 actionLR(0)[s] if and only if re k 2 actionSLR(1)[s; a] for some a 2 �0;

� s0 2 gotoLR(0)[s; a] if and only if sh s0 2 actionSLR(1)[s; a];

� s0 2 gotoLR(0)[s; A] if and only if s0 2 gotoSLR(1)[s; A].

This leads to the following di�erences for the parsing schemata:

� The closure deduction steps are identical, as the construction of the set of
states is not a�ected.

� The shift deduction steps are identical. When the LR(0) parser decides to
shift, this will only lead to a new entry in the stack if the goto table yields
a new state for the shifted terminal.

� There is a di�erence in reduce deduction steps. In the SLR(1) case, a re-
duction is carried out only if this is licensed by the look-ahead symbol. In
grammarG3, for example, as de�ned on page 274, the SLR(1) parser will re-
duce a *v by a production VP!*v only if it is followed by an end-of-sentence
marker. The SLR(0) parser always reduces *v to VP .

These observations are laid down in the following parsing schema.

Schema 12.5 (SLR(1))
The parsing schema SLR(1) is de�ned for reduced acyclic context-free grammars
without hidden left-recursion. Let G be such a grammar and G0 the augmented
grammar. A parsing system PSLR(1) = hISLR(1);H;DSLR(1)i is de�ned by

ISLR(1) = f[A!���; i; j] j A!�� 2 P 0 ^ 0 � i � jg;

DInit = f ` [S0!�S$; 0; 0]g;

DCl = f[A!��B�; i; j] ` [B!�; j; j]g;

DSh = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; j; j + 1]g;

DRe = f[A!��B�; h; i]; [B!�; i; j]; [a; j; j+ 1] ` [A!�B��; h; j]

j a 2 First(�Follow(A))g;

DSLR(1) = DInit [DCl [DSh [DRe;

The set of hypotheses H depends on the input string, cf. (12.18) on page 305. 2

We call an item SLR(1)-valid for a grammar G and string a1 : : :an if it is a valid
item in the SLR(1) parsing schema for G and a1 : : :an. A characterization of the
set of valid items is somewhat more involved in the SLR(1) case than in the LR(0)
case.

310 12. Generalized LR parsing

Theorem 12.6 (SLR(1)-validity)
A marked LR(0) item is SLR(1)-valid only if one of the following cases applies:

� [A!�a��; i; j] is SLR(1)-valid if it is LR(0)-viable;

� [A!�B��; i; j] is SLR(1)-valid if it is SLR(1)-viable;

� [S0!�S$; 0; 0] is SLR(1)-valid;

� [C!�; j; j] is SLR(1)-valid if there is an SLR(1)-valid item [A!��B�; i; j]
and some � such that B)�

rm
C�.

Proof.
We only give a sketch. The proof can be completed straightforwardly by writing
out all the di�erent cases. The proof is based on the following two facts:

Fact 1: an SLR(1)-viable item is SLR(1)-valid.

This follows from the observation that if the consequent of any deduction step
is SLR(1)-viable, then the antecedents7 are also SLR(1)-viable. This holds, by
induction, for all preceding steps in a deduction sequence.

Fact 2: an SLR(1)-valid item is LR(0)-viable.

This follows from the observation that SLR(1) is obtained by restricting LR(0)

with look-ahead. I.e., LR(0)
df
=) SLR(1), cf. Section 6.3.

The soundness (an item is valid only if it ful�lls one of the mentioned conditions)
follows straightforwardly from Fact 2 and the de�nition of the deduction steps;
the completeness (if an item ful�lls one of the conditions it is indeed valid) follows
straightforwardly from Fact 1 and the de�nition of the deduction steps. 2

12.9 Conclusion

We have derived some parsing schemata for (Generalized) LR parsers. Similar
schemata for SLR(k), canonical LR(k) and LALR(k) can be added in the same
fashion. In this way we have shown that parsing schemata can be used to describe
parsing algorithms that are quite di�erent from chart parsers.

The LR parsing schemata formalize the close relation between Generalized
LR parsing | in particular Tomita's algorithm | and the conventional Earley
parser. In the next chapter we will exploit this relation for the de�nition of a
parallel Tomita parser, by cross-fertilizing a bottom-up parallelization of Earley
with Tomita's algorithm.

Thus we have presented an example of how an algorithm that is very di�erent
from a chart parser can be described by parsing schemata as well.

7That is, the antecedents in I. Antecedents can also be hypotheses, which are de�ned to be

outside I, hence the de�nition of viability does not apply to these.

Chapter 13

Parallel Bottom-up

Tomita parsing

In the previous chapter we have derived the parsing schema LR(0) and concluded

that the di�erences with Earley are trivial details. Hence there is a structural

correspondence between Earley chart parser and generalized LR parsers. This

correspondence can be used to cross-fertilize di�erent variants of either kind algo-

rithm. A particularly interesting example that we will discuss here is the Parallel

Bottom-up Tomita (PBT) algorithm [Lankhorst and Sikkel, 1991], [Sikkel and

Lankhorst, 1992], where the conventional parallelization of Earley's algorithm is

applied to the Tomita parser.

The PBT algorithm improves upon the canonical Tomita parser in several

respects. Only a theoretical advantage is that it works for all (reduced) context-

free grammars and obtains optimal sharing in the parse forest. An interesting

practical property for large grammars is that parsing tables are small and can

be computed in linear time. PBT has been implemented and empirically tested

against Tomita's algorithm. It turns out that PBT is faster for long sentences and

slower for short sentences; it is di�cult to give a break-even point. Even though

the speed-up is not overwhelming, we see this as a moderately positive result.

The algorithm works
1 and has some theoretical advantages over the canonical

Tomita parser. And, more important in the setting of this book, it shows that it is

possible to design novel, useful algorithms by cross-breeding di�erent algorithms

with related underlying parsing schemata.

1It is very hard, if at all possible, to predict theoretically how communication bottlenecks and

uneven load distribution will degrade the performance of an algorithm that looks nice on paper.
See Thompson [1989], for example, for a parallel parser that gets slower the more processors are

used for the job.

311

312 13. Parallel Bottom-up Tomita parsing

In 13.1 we de�ne a parsing schema PBT that relates to LR(0) as buE relates

to Earley. The basic algorithm is explained in 13.2 and a more e�cient variant in

13.3, followed by the construction of the (distributed) parse list in 13.1. A formal

speci�cation of the PBT algorithm is presented in 13.5. In 13.6 the empirical test

results are reported on. A brief overview of related approaches is given in 13.7,

followed by conclusions in 13.8.

This chapter is based on cooperative work with Marc Lankhorst. Marc did

in fact most of the work, at the occasion of his M.Sc. Thesis [Lankhorst, 1991].

Moreover, he detected several aws in my initial design. A full account of the PBT

parser is given in [Lankhorst and Sikkel, 1991], and overview has been published

as [Sikkel and Lankhorst, 1992].

13.1 The PBT parsing schema

The obvious way to make a parallel implementation of a Tomita parser is to allo-

cate each stack to a di�erent process. Two such implementations, in a parallel logic

programming language, have been presented by Tanaka and Numazaki. Maintain-

ing a graph-structured stack would require too much synchronisation, therefore

they work in parallel on separate copies of linear stacks [Tanaka and Numazaki,

1989], or with tree-structured stacks [Numazaki and Tanaka, 1990]. A similar line

of parallelization is followed by Thompson, Dixon, and Lamping [1991]. They

modify a nondeterministic shift/reduce parser in such a way that O(n) time com-

plexity is obtained if there are enough resources to fork o� a separate process for

each ambiguity. We look at the problem of Generalized LR parsing from quite

a di�erent angle. One could say that our view is perpendicular to the above

approaches.

A straightforward parallel version of Earley's algorithm is obtained by dis-

carding the top-down �lter. This eliminates the need to parse the sentence in

left-to-right fashion, one can start parsing at each word of the sentence in parallel;

cf. Section 4.6 where the bottom-up Earley schema buE has been de�ned. In a

similar vein, we will delete the top-down prediction from Generalized LR parsing,

and de�ne a Tomita-like parser with an underlying parsing schema that is al-

most identical to buE. Our Parallel Bottom-up Tomita (PBT) parser will not use

look-ahead; it can be seen as a parallelization of the LR(0)-based Tomita parser.

Schema 13.1 (PBT)

The parsing schema PBT is de�ned for all reduced context-free grammars (cf.

page 272). Let G0 be the the augmented grammar of some reduce grammar G. A

parsing system PPBT = hIPBT ;H;DPBT i is de�ned by

IPBT = f[A!���; i; j] j A!�� 2 P 0 ^ 0 � i � jg;
DInit = f ` [A!��; j; j]g;

13.2 A PBT parser 313

DSh = f[A!��a�; i; j]; [a; j; j + 1] ` [A!�a��; i; j + 1]g;

DRe = f[A!��B�; h; i]; [B!�; i; j] ` [A!�B��; h; j]g;

DPBT = DInit [DSh [DRe:

The main di�erence between PBT and buE is the use of the extra production

S0!S$ with which the grammar has been augmented. Furthermore, buE is also

de�ned for non-reduced context-free grammars. 2

13.2 A PBT parser

We will de�ne a Tomita-like parallel parsing algorithm that implements the PBT

schema. In fact we only de�ne a recognizer here, similarly to the annotated version

of Tomita's algorithm. The architecture of the PBT parser comprises a sequence

of of processes P0; : : : ; Pn, communicating in a pipeline. See Figure 13.1. Each

process computes its own part of the (distributed) parse list. But we will defer

construction of the parse list until Section 13.4. If less than n processors are

available for parsing a sentence a1 : : : an, then several processes can be shared by

a single processor. The task of a process Pi is to recognize all constituents that

start at position i in the sentence.

P0 P1 : : : Pn�1 Pn

a1 a2 : : : an $

6 6 6 6

6 6 6 6
����

Figure 13.1: A pipeline of processes

For technical reasons, recognized constituents will always be tagged with po-

sition markers. We write hi;X; ji for a constituent X that spans the substring

ai+1 : : :aj of the sentence. We use angular brackets rather than square brackets so

as to underline the di�erence with marked LR(0) items. It is more convenient to

start a marked symbol with the left position marker for reasons that will become

clear in Section 13.4.

Marked items are used only in the annotated versions of Tomita-like parsers

and can be disposed of. Marked symbols, on the other hand, are essential for the

algorithmic details of the PBT parser. Whenever a constituent is recognized by

some process Pi it is passed down the pipeline in leftward direction. If, for exam-

ple, Pi has recognized a prepositional phrase hi;PP ; ji, then some other process

314 13. Parallel Bottom-up Tomita parsing

Ph, having recognized a noun phrase hh;NP; ii might pick it up and construct a

composite noun phrase hh;NP ; ji using the production NP!NP PP .

Each process runs and adapted version of a Tomita parser and creates its

private graph-structured stack. Process Pi starts with recognizing its \own" word

ai and delivers a constituent hi; a; i+ 1i down the pipeline. Subsequently, it reads

a stream of symbols from its right neighbour, takes appropriate actions, and sends

the stream of symbols to its left neighbour. For each constituent that is passed

down the pipeline, Pi tries whether it �ts somewhere onto its graph-structured

stack. If so, the stack is expanded with a symbol vertex and a state vertex. If the

new state vertex allows a reduction, the reduced symbol is added to the stack and

inserted into the stream of symbols. The last symbol in the stream is hn; $; n+1i.
Process Pi terminates after the end-of-sentence marker has been read and passed

on.

We will �rst look at an example and give a speci�cation of the di�erences

between the LR(0) algorithm and PBT afterwards. The example makes use of a

slightly di�erent grammar G5:

(1) S!NP VP (5) PP!*prep NP

(2) NP!*det *n (6) VP!*v NP

(3) NP!*n (7) VP!VP PP :

(4) NP!NP PP

The di�erence between G4 and G5 is that a PP on sentence level is attached to

the VP rather than to the S symbol. There is no linguistic motivation (as for all

the example grammars), the purpose of this change is simply to allow for a better

example.

In order to show the distributed nature of the PBT algorithm, we single out

one speci�c process and trace its behaviour on the example sentence \I saw a man

with a telescope." We will focus on proces P1 that is to recognize all constituents

starting with the second word \saw." The adapted parsing table is shown in

Figure 13.2. We will �rst follow the example and discuss the construction of the

parsing table afterwards.

The stream of symbols that is read from P2 in due course2 is

h2;NP; 4i; h4;PP ; 7i; h2;NP; 7i; h7; $; 8i:
We start with an empty stack, represented by a single state vertex labelled 0.

First, P1's terminal symbol h1; *v ; 2i is shifted. A symbol vertex and state vertex

are added to the stack as usual. No reduction can be made, so we read h2;NP ; 4i
from the pipe. In state 7 this can be shifted. The new state is 13, requiring action

2This is in fact an optimized version of the algorithm. In a more simple version, all symbols
recognized by all processes P2; : : : ; P7 pass through P1. In the optimized version, a symbol is

discarded by some process Pi if it can be argued that none of the processes P0; : : : Pi�1 can use
it, irrespective of the categories of their words a1; : : : ; ai. This will be discussed in more detail

in 13.3.

13.2 A PBT parser 315

goto

LR(0) items action *d *n �p *v S NP PP VP $

0

S0!�S$

S!�NP VP

NP!�*det *n

NP!�*n

NP!�NP PP

PP!�*prep NP

VP!�*v NP

VP!�VP PP

sh 4 5 6 7 1 2 3

1 S0!S�$ sh acc

2
S!NP�VP

NP!NP �PP
sh 9 8

3 VP!VP �PP sh 10

4 NP!*det �*n sh 11

5 NP!*det �*n re3

6 PP!*prep�NP sh 12

7 VP!*v �NP sh 13

8 S!NP VP� re1

9 NP!NP PP� re4

10 V P!VP PP � re7

11 NP!*det *n� re2

12 PP!*prep NP � re5

13 VP!*v NP� re6

Figure 13.2: An annotated PBT parsing table for G5

re VP!*v NP . So we create a symbol vertex labelled h1;VP ; 4i and start a new

branch of the stack from the state vertex preceding h1; *v ; 2i. The new state is 3.

The stack that has been created so far is depicted in Figure 13.3. For the sake

of clarity the state vertices are grouped into subsets Uj with j the right position

marker of the preceding symbol. In the PBT algorithm it is essential that branches

of the stack are not pruned. As we will see in the sequel, the vertex in state 7 in

U2 will be used to shift another NP onto.

The next symbol that appears in the stream is h4;PP ; 7i. This shifted in

state 3 (at position 4) and h1;VP ; 4ih4;PP; 7i is reduced to h1;VP ; 7i. Note that
h4;PP ; 7i could not be shifted from state 13 | there is no entry in the goto table

| although h2;NP ; 4ih4;PP; 7i is reducible to a compound NP . This is because

P1 only creates new symbols that start at position 1. As we read the next symbol,

it turns out that h2;NP ; 7i has indeed been created by P2. It is shifted at position

316 13. Parallel Bottom-up Tomita parsing

�
��
0 1,*v ,2 �

��
7 2,NP ,4 �

��
13

1,VP ,4

@
@@

�
��
3

1 2 4

Figure 13.3: The stack after reducing h1;VP ; 4i

2. Subsequently we can reduce a verb phrase h1;VP; 7i. This symbol is already

present in the stack and need not be added again. The last symbol, h7; $; 8i, cannot
be shifted anywhere. It also signals the end of the stream, hence P1 has �nished

its task. The �nal parse stack of P1 is shown in Figure 13.4.

�
��
0

1,*v ,2

�
�� �

��
7 2,NP ,4 �

��
13

2,NP ,7

@
@@ �

��
13

1,VP ,4

@
@@ �

��
3 1,PP ,7 �

��
10

1,VP ,7

A
A
A
AA �

��
3

1 2 4 7

Figure 13.4: The �nal stack of P1

Symbols are sent on to the left neighbour as soon as they are read or created,

in order to minimize waiting time. Some ordering requirements must be made,

however, so as to guarantee the correctness of the algorithm. When a process

has to decide whether the next symbol hi;X; ji �ts anywhere onto the stack, it is
essential that all symbols hk; Y; li with k � l � i must have been received and,

if necessary, added to the stack. For symbols with i < j this is no problem.

Whenever a symbol hi;X; ji causes a reduction at process Ph with h � i, then

the reduced symbol hh; Y; ji is inserted into the stream directly after hi;X; ji and
the ordering constraint is kept automatically. Some care must be taken in case of

"-productions, however. In order to guarantee that all state vertices onto which

a symbol can be shifted are created before the symbol arrives, we have to ensure

the following conditions:

� A symbol of the form hj;X; ji must precede all symbols hj; Y; ki with j < k.

13.2 A PBT parser 317

� All symbols of the form hi; Y; ji with i < j must precede a symbol hj;X; ji.
� Symbols of the form hj;X; ji and hj; Y; ji must precede each other .

The �rst two conditions are easy to satisfy. Above we have given a slightly over-

simpli�ed description of the algorithm. Before the \own" terminal symbol is pro-

cessed, Pj carries out all reductions of nullable constituents at position j. The

third condition is rather more awkward. A nullable symbol has to be re-tried for

a shift after other nullable symbols at the same position have been received.

For grammars where large subtrees can be rewritten to ", one could pre-

compute all nullable symbols, start each process with this pre-computed stack,

and also pre-compute an order in which (possibly multiple copies of) nullable

symbols have to be sent down the pipe. In that case the third condition can be

dropped and some work of each process is done compile-time rather than run-time.

We have not added such sophistication to our implementation, however. For natu-

ral language grammars this is hardly an issue. We did implement a simpli�cation

of the reduce action. Rather than carrying out a proper reduction, a recognized

symbol is pushed back onto the input and subsequently shifted just like any other

symbol.

The construction of the PBT parsing table is in fact much simpler than the

construction of any LR table. It is easy to prove that the number of states is

O(jGj), i.e., linear in the size of the grammar.3 If only non-empty entries in the

goto table are represented, the size of the parsing table is O(jGj). And, more

importantly, computing the table take O(jGj) time.

The cause of this simplicity is the absence of the notion of a closure. This

is because Pi only has to recognize constituents starting at position i. If (in the

annotated version) an item [A!��B�; i; j] has been computed, with i < j, there

is no need to start parsing B. This is the task of process Ij. If such a B exists,

it will simply arrive through the pipeline. An algorithm for computation of the

PBT parsing table is presented in Figure 13.5.

The di�erences between PBT and the LR(0) Tomita parser can be summarized

as follows.

� Every process Pi runs an adapted parsing table without look-ahead de�ned

by the algorithm in Figure 13.5.

� The algorithm that is run by each process does not synchronise on shifts;

therefore the ordering requirements as stated on page 316 must be obeyed.

� Two position markers are tagged onto each recognized symbol, in order to

keep track of the substring that is spanned by the symbol.

3See (11.4) on page 256 for a de�nition of jGj.

318 13. Parallel Bottom-up Tomita parsing

function next state(I: set of items, X: symbol): set of items;

begin

if I = S0!S�$ and X = $

then next state := accept

else next state := fA!�X�� j A!��X� 2 Ig
fi

end;

function all states: set of sets of items

begin

s0 := fA!�� j A!� 2 P 0g;
C := fs0g;
while there is a state I 2 C and a symbol X 2 V 0

such that next state(I;X) 6= ; and next state(I;X) 62 C

do C := C [fnext state(I;X)g od;
all states := C

end;

procedure construct PBT table

begin

C := all states;

for each I 2 C

do action[I] := ;;
for each X 2 V 0 do goto[I;X] := error od;

for each item 2 I

do case item of

A!��a�:

action[I] := action [I] [fshiftg;
goto[I; a] := next state(I; a)

A!��B�:

goto[I; B] := next state(I; B)

A!��:

action[I] := action [I] [freduce A!�g
esac

od od

end;

Figure 13.5: computation of the PBT states and parsing table

13.3 A more e�cient PBT parser 319

� On a reduce it is not allowed to prune the reduced branch of the stack.

A complete speci�cation of the PBT algorithm, compatible in style with the spec-

i�cation of Tomita's algorithm, is given in Section 13.5. For acyclic grammars

without hidden left-recursion, it is straightforward to verify that a state vertex

u can be annotated with a set of marked LR(0) items items(u) and that the

annotated PBT algorithm duely implements the PBT parsing schema.

Surprisingly, perhaps, the PBT algorithm also works for cyclic and hidden left-

recursive grammars. We will come back to this in Section 13.4, where we discuss

the construction of a parse list.

13.3 A more e�cient PBT parser

The PBT algorithm as discussed above su�ers from some ine�ciency. Most recog-

nized symbols can be used only locally and it may easily lead to a communication

bottleneck if every symbol is passed down the entire pipeline. In the example on

page 314, only four symbols were received by P1: two NPs, a PP and an end-

of-sentence marker. Filtering of useless symbols had been applied there already.

Without such a communication �lter, P1 would receive the following stream of

symbols:

h2; *det; 3i; h3; *n; 4i; h3;NP; 4i; h2;NP; 4i; h4; *prep; 5i;
h5; *det; 6i; h6; *n; 7i; h6;NP; 7i; h5;NP; 7i; h4;PP ; 7i;
h3;NP; 7i; h2;NP; 7i; h7; $; 8i:

The majority of these symbols can be discarded higher up in the pipeline. We

will de�ne two criteria to detect that a symbol is useless for the remainder of the

pipeline and should be discarded.

The �rst case is simple. Consider a symbol X 2 V that appears only as the

�rst symbol in left-hand sides of productions. In such a case, a symbol hi;X; ji can
only be used by process Pi and by no other process. As an example, consider *det ,

which only appears in the production NP!*det *n . When P5 �nds a determiner

h5; *det ; 6i it can only contribute to the recognition of NPs starting at position 5.

Hence, it need not be sent on to P4 and further down. Formally,

� communication savings rule I:

Pi writes a symbol hi;X; ji to Pi�1 only if there are

A; Y; �; � such that A!Y �X� 2 P:

A communication savings table for grammar G5 is shown in �gure 13.6.

A second, somewhat more involved communication savings scheme is the fol-

lowing. Each process Pi has its \own" terminal ai+1. Is it possible, knowing the

marked terminal hi; ai+1; i + 1i, to discard symbols hi + 1; X; ji that arrive from

320 13. Parallel Bottom-up Tomita parsing

*det *n *v *prep NP PP VP S

� + � � + + + �
(+ in entry X means: Pi passes symbols hi;X; ji to Pi�1)

Figure 13.6: Communication savings table I for G5

Pi+1? Evidently, hi+1; X; ji can only contribute to a parse if X 2 Follow(ai+1).

If X cannot logically follow ai+1 then the marked symbol can be discarded. An

example of this is h3;NP; 4i. An NP cannot follow *det , but P3 has no way of

knowing that this is indeed the case. So the NP is sent on to P2, which is able to

determine that h3;NP; 4i is indeed useless.

A more subtle �ltering scheme is possible, however. As an example, consider

the marked symbol h6; *n; 7i that is received by P5. This is clearly a useful symbol;

*n 2 Follow(*det) and it is used to construct h5;NP ; 7i. But we will argue

that it can not be used by P0; : : : ; P4 and hence need not be sent on. A close

inspection of the parsing table in Figure 13.2 shows that some *n can be used

only if a process has an immediately preceding *det on its stack. As h5; *det ; 6i is
not sent on to P1, by communication savings rule I, there is no way in which any

process down the pipeline could do anything useful with h6; *n; 7i. In general, if

Pi owns terminal hi; a; i + 1i, a symbol hi + 1; X; ji needs to be passed on if the

combination aX appears somewhere but not at the beginning a left-hand side, or

else if a combination AX appears in the right-hand side of a production and A

produces a string ending with a. More formally:

� communication savings rule II:

Pi, having recognized a terminal symbol hi; a; i+1i, writes a marked symbol

hi+ 1; X; ji to Pi�1 only if one of the following cases applies:

(i) there are B; Y; �; � such that B!Y �aX� 2 P ;

(ii) there are B;A;X; �; � such that B!�AX� 2 P and a 2 Last(A).4

Communication savings table II for grammar G5 is shown in Figure 13.7. See

Lankhorst and Sikkel [1991] for an algorithm that computes communication sav-

ings table II for an arbitrary grammar.

It is possible to de�ne grammars in which some junk will slip through the

mazes of our two �lters and more sophisticated �ltering mechanisms would provide

smaller optimizations. Consider, for example a grammar

fS!abD; S!ccD; D!d; D!cdg
4
Last is the mirror image of First, cf. Section 12.1.

13.4 The construction of a distributed parse list 321

a n X *det *n *v *prep NP PP VP S

*det � � � � � � � �
*n � � � � � + + �
*v � � � � � � � �
*prep � � � � � � � �

(+ in entry [a;X] means: if ai+1 = a then Pi passes hi+ 1; X; ji to Pi�1)

Figure 13.7: Communication savings table II for G5

and an input string abcd. Then P2, owning a terminal h2; c; 3i, will pass h3; D; 4i
that satis�es communication rules I and II(i). In this case P1 could detect, when

it is supplied with enough sophistication, that h3; D; 4i is no longer useful. We

conjecture, however, that adding such sophistication will only be detrimental to the

average-case e�ciency of the algorithm; weird constructions like this are unlikely

to appear in natural language grammars.

13.4 The construction of a distributed parse list

The PBT parser can be easily extended with the computation of a packed shared

forest, represented by a parse list. Each process computes its own part of the

parse list. That is, the output of Pi contains all entries in the parse list with

left position marker i. We need to make a single technical adjustment, however.

Entries in the parse list of Pi may contain pointers to entries in other parts of the

distributed parse list. To that end we tag such pointers onto the symbols that are

passed down the pipeline. The left position marker i of a symbol is annotated with

its local label in the parse list. Marked symbols now have the format hi:k;X; ji,
where k indicates the k-th entry in the parse list of Pi. The combination of left

place marker and local label provides a unique reference across the di�erent partial

parse lists. In Figure 13.8 a parse list for the example sentence is shown.

The parse forest is not identical to the one produced by Tomita's algorithm.

The nodes in our parse forest satisfy the following speci�cation:

� a node hi;X; ji is contained in the forest if and only i� X)�ai+1 : : :aj .

The PBT forest contains more nodes that are not reachable from the root, because

the top-down �ltering has been discarded. On the other hand, if X)�ai+1 : : :aj ,

then it is guaranteed that the PBT forest contains a unique node hi;X; ji (possibly
containing multiple sub-nodes). In Tomita's algorithm, a symbol that spans some

speci�c part of the sentence is usually represented by a single node. Sharing

may fail, however, when identical symbol vertices on the stack are followed by

322 13. Parallel Bottom-up Tomita parsing

symbol children

h6:1; *n; 7i
h6:2;NP; 7i (6.1)

h5:1; *det; 6i
h5:2;NP; 7i (5.1, 6.1)

h4:1; *prep; 5i
h4:2;PP; 5i (4.1, 5.2)

h3:1; *n; 4i
h3:2;NP; 4i (3.1)

h3:3;NP; 7i (3.2, 4.2)

h2:1; *det; 3i
h2:2;NP; 4i (2.1, 3.1)

h2:3;NP; 7i (2.2, 4.2)

h1:1; *v; 2i
h1:2;VP; 4i (1.1, 2.2)

h1:3;VP; 7i (1.1, 2.3) (1.2, 4.2)

h0:1; *n; 1i
h0:2;NP; 1i (0.1)

h0:3; S; 4i (0.2, 1.2)

h0:4; S; 7i (0.2, 1.3)

Figure 13.8: the parse list, root node is 0.4

di�erent state vertices. Hence an exact speci�cation of Tomita's parse forest is very

complicated (in fact Tomita doesn't give one), as it depends on the idiosyncrasies

of the particular LR parsing table.

A more substantial improvement upon Tomita's algorithm, from a theoreti-

cal perspective, is that PBT runs on arbitrary context-free grammars. Consider,

again, the hidden left-recursive grammar

fS!AS b; S!a; A!"g;
that was used as a counterexample in Section 12.6. Tomita's algorithm, anticipat-

ing an arbitrary number of b's, creates in�nitely many A's for a start. The in�nite

series of reductions is driven by

closure(fS!A�Sbg) = fS!A�Sb; S!�ASbg:
When the parser gets into this state, with look-ahead a, it will "-reduce an A and

move on to the same state. PBT, in contrast, will only reduce a single h0; A; 0i.
There is no cycle in the parsing table because the closure function was not used

in its construction. In Figure 13.9 the graph-structured PBT stack of P0 is shown

for the sentence ab. The parse list is given in shown in Figure 13.10.

13.4 The construction of a distributed parse list 323

�
��
0 0,a,1 �

��
3

0,S,1

A
AA �

��
2

0,S,2

C
C
C
CC

�
��
2

�
��
1 0,S,1 �

��
4 1,b,2 �

��
5

0,S,2

@
@@ �

��
4

0,A,0

0 1 2

Figure 13.9: parse stack of P0 for the sentence ab

symbol children

h2:1; A; 2i ()

h1:1; A; 1i ()

h1:2; b; 2i
h0:1; A; 0i ()

h0:2; a; 1i
h0:3; S; 1i (0.2)

h0:4; S; 2i (0.1, 0.3, 1.2)

Figure 13.10: parse list of P0 for the sentence ab

324 13. Parallel Bottom-up Tomita parsing

Cyclic grammars are also parsed in a natural way, without the need for extra

sophistication. Consider the grammar fS!S; S!ag, and the sentence a. When

h0; S; 1i is recognized, it is reduced to h0; S; 1i, which is already present, and need

not be added again. Thus the parser will add the corresponding node as a sub-

node to itself . The complete parse list is shown in Figure 13.12. The parse forest

is drawn as a graph in Figure 13.11.

a

S S

@@

��

Figure 13.11: parse forest for a, G = fS!S; S!ag

symbol children

h0:1; a; 1i
h0:2; S; 1i (0.2), (0.1)

Figure 13.12: The parse list for a, G = fS!Sjag
.

Rekers, in Chapter 1 of his Ph.D Thesis [1991], discusses how optimal node

sharing and parsing of arbitrary context-free grammars can be obtained. In PBT

these features come about naturally.

13.5 A formal de�nition of the PBT algorithm

The following formal description of PBT is based on Lankhorst [1991]. It is in a

style similar to the formal description of Tomita's algorithm in Section 12.5.

It is useful, perhaps, to remind the reader that the direction of the edges is

from the top of the stack to the bottom (i.e., in all �gures, from right to left).

In the formal description we use the following functions and global variables:

�i: graph-structured stack in processor Pi. This is a directed, acyclic graph with

a single leaf node, v0, labelled with state number s0. � is initialized in parse

and altered in shifter.

Ti: shared packed forest in processor Pi. This is a directed graph (Vi; Ei) in

which each vertex v 2 Vi may have more than one successor list hv; Li 2 Ei.

Initialized in parse and altered in reducer, e-reducer, and shifter.

13.5 A formal de�nition of the PBT algorithm 325

ri: the result returned by processor Pi. This is a set of vertices of Ti which form

the roots of the parse forest in Pi. r0 contains the global result. Initialized

in parse and altered in shifter.

Ui;k: set of vertices of �i, for which the following property holds:

u 2 Ui;k) some partial parse of the substring ai+1 : : :ak of the input string

(produced by Pi) is contained in the portion of the stack following u.

Initialized in parseword and altered in shifter.

A: subset of \active" vertices of Ui;k on which reductions and shift actions can

be carried out. A is initialized in parseword and altered in actor and

shifter.

R: set of edges to be reduced. Each element is a triple hv; x; pi with v 2 Ui;k,

x 2 successors(v) and p a non-empty production of G. hv; x; pi 2 R means

that reduce p is to be applied on the path starting with the edge from v to

x. reducer will take care of it. R is initialized in parseword and altered

in actor, reducer, and shifter.

Re: set of vertices on which an "-reduction is to be carried out. Each element

is a pair hv; pi with v 2 Ui;k and p and "-production. hv; pi 2 Re means

that reduce p is to be applied on the vertex v. e-reducer will carry out

this reduction. Re is initialized in parseword and altered in actor and

e-reducer.

Q: set of vertices to be shifted on. If hj;X; ki is to be shifted, Q is de�ned as

follows:

Q = fhv; si j v 2 V ^ s = goto(state(v); sym) 62 ferror; acceptgg:

In this de�nition, V � Ui;j is a set of vertices on which a shift action may be

carried out. hv; si 2 Q means that shift s is to be carried out on v. shifter

will take care of this. Q is local to shifter.

S: contains the symbols hj;X; ji which have so far been read by processor Pi.

When a symbol hk;X; li (l > j) is read from the pipeline, the elements of S
are written to the pipeline and S is emptied. S is initialized and altered in

parseword and used in shifter.

left(p): left-hand side of production p.

jpj: length of the right-hand side of production p.

state(v): takes a vertex in �i as its argument and returns the state label of this

vertex.

326 13. Parallel Bottom-up Tomita parsing

symbol(x): takes a vertex in �i as its argument and returns the symbol label of

this vertex. This label is a link to a vertex in Ti.

successors(v): takes a vertex in �i as its argument and returns the set of all

vertices x in �i such that there is an edge from v to x.

goto(s; A): looks up the goto table and returns a state number.

s is a state number and A is a grammar symbol.

action(s): looks up the action table and returns a set of actions.

s is a state number.

addsubnode(v; L): takes a vertex v in Ti and a successor list L as arguments and

adds hv; Li to Ei in Ti = (Vi; Ei).

buffer(hi:m;A; ji): bu�ers a symbol hi:m;A; ji in a �rst-in �rst-out bu�er.

When a read action is executed, this bu�er is read, and only if it is empty

a symbol is read directly from the incoming pipe.

read(hi:m;A; ji): reads a symbol hi:m;A; ji from the bu�er or incoming pipe.

write(hi:m;A; ji): writes a symbol hi:m;A; ji into the outgoing pipe.

push(hi:m;A; ji): pushes a symbol hi:m;A; ji back into the incoming pipe.

si: state i of the parsing table, consisting of a set of dotted rules.

gi;X : state to go to from state si on symbol X, de�ned as

fA!�X�� j A!��X� 2 sig:

The parser is de�ned by the following set of procedures

procedure parse(G; a1 : : : an)

begin

an+1 := $;

for i := 0 to n in parallel

do �i := ;; Ti := ;; ri := ;;
create in �i a vertex v0 labelled s0;

parseword(i)

od;

return r0, the set of roots of the parse forest

end parse;

13.5 A formal de�nition of the PBT algorithm 327

procedure parseword(i)

begin

k := i; Ui;k := fv0g; A := Ui;k;

R := ;; Re := ;; S := ;;
previous := 0;

input(hi; ai+1; i+ 1i);
create in Ti a node m labelled ai+1;

push(hi:m; ai+1; i+ 1i);
repeat

while A 6= ; do actor od;

if R 6= ; then reducer fi;

if Re 6= ; then e-reducer fi;

read(h�rst:label ; sym; lasti);
if last 6= previous

then for all hj:l; X; ji 2 S do write(hj:l; X; ji) od fi;

S := ;;
previous := last ;

if �rst = last

then S := S [fh�rst :label; sym; lastig
else write(h�rst :label; sym; lasti)
fi;

shifter(h�rst :label; sym; lasti; Ui;�rst);

k := last;

until sym = $

end parseword;

procedure actor

begin

remove one element v from A;

for all � 2 action(state(v))

do if � = reduce p and p is not an "-production

then for all x 2 successors(v)

do R := R [fhv; x; pig od
elseif � = reduce p and p is an "-production

then Re := Re [fhv; pig
fi

od

end actor;

328 13. Parallel Bottom-up Tomita parsing

procedure reducer

begin

remove one element hv; x; pi from R;

N := left(p);

for all y such that there exists a path of length 2jpj � 2 from x to y

do L := (symbol(z1); : : : ; symbol(zjpj)); where

z1 = x1, zjpj = y and z2; : : : ; zjpj�1 are

symbol vertices in the path from x to y;

for all s such that

9w(w 2 successors(y) ^ goto(state(w); N) = s)

do W := fw j w 2 successors(y)

^ goto(state(w); N) = sg;
if 9u(u 2 Ui;k ^ state(u) = s)

then if there is an edge from u to a vertex z

such that successors(z) = W

then addsubnode(symbol(z); L)

else if Ti does not contain

a node m labelled N

then create in Ti a node m labelled N fi;

addsubnode(m;L);

buffer(hi:m;N; ki)
else if Ti does not contain a node m labelled N

then create in T a node m labelled N fi;

addsubnode(m;L);

buffer(hi:m;N; ki);
fi

od od

end reducer;

procedure e-reducer (* will only be called if k = i *)

begin

for all hv; pi 2 Re

do N := left(p);

create in Ti a node m labelled N ;

addsubnode(m;nil);

buffer(hi:m;N; ki)
od;

Re := ;;
end e-reducer;

13.5 A formal de�nition of the PBT algorithm 329

procedure shifter(h�rst :label; sym; lasti; V)
begin

ri := ri [fsymbol(m) j m 2 successors(v) ^ v 2 V ^
goto(state(v); sym) = acceptg;

Q := fhv; si j v 2 V ^ s = goto(state(v); sym) 62 ferror; acceptgg;
W := 0;

for all s such that 9v(hv; si 2 Q)

do if 9w 2 Ui;last ^ state(w) = s)

then create in �i a vertex x labelled �rst:label ;

create in �i and edge from w to x;

for all v such that hv; si 2 Q

do create in �i and edge from x to v od;

if w 62 A

then for all q such that reduce q 2 action(s)

and q is not an "-production

do R := R [fhw; x; qig od
fi

else create in �i two vertices w and x labelled

s and �rst :label, respectively;

create in �i an edge from w to x;

for all v such that hv; si 2 Q

do create in �i an edge from x to v od;

Ui;last := Ui;last [fwg;
A := A [fwg;
W := W [fwg;

fi

od;

if W 6= ;
then for all hlast:m;X; lasti 2 S

do shifter(hlast :m;X; lasti;W) od

fi

end shifter;

330 13. Parallel Bottom-up Tomita parsing

13.6 Empirical results

The PBT algorithm has been tested in a series of experiments in which parallel

execution was simulated on a single workstation, In this way we could experiment

with an arbitrary number of (simulated) processors.

The simulation set-up is as follows. Each (virtual) process is run consecutively.

The stream of symbols is stored internally, rather than written to a pipe. When

the next virtual process is started, the clock is reset. For every (simulated) read

and write an extra processing time of 1 ms is counted. Each symbol that is sent

from one virtual process to another is timestamped. When a process receives a

symbol with a time stamp later than its own time, the clock is updated and the

waiting time accounted for.

We5 implemented PBT in the language C and re-implemented Tomita's algo-

rithm so as to ensure compatibility. We have not attempted to optimize run-time

e�ciency at the expense of straightforwardness. The timing experiments have been

conducted on a Commodore Amiga because of its accurate timing capabilities.

The grammars and example sentences are the ones given by Tomita [1985].

Grammar I is the example grammar G5. Grammars II, III and IV have 42, 223

and 386 rules, respectively. Sentence set A contains 40 sentences, taken from ac-

tual publications, as listed in the appendix of [Tomita, 1985]. Set B is constructed

as *n*v*det*n(*prep*det*n)k�1 with k ranging from 1 to 13. In Figures 13.13

and 13.14 the timing results for set B and grammars III and IV are plotted on

a double logarithmic scale. These �gures show that gain in speed due to paral-

lelization outweighs the additional communication overhead only if a sentence is

su�ciently long. An exact break-even point cannot be given, as it depends on

the grammar, the sentence, the characteristics of the parallel architecture and the

implementation.

Similarly, Figure 13.14 shows that the extra overhead for �ltering pays o� only

if the sentence is not too small. We could tip the balance somewhat more in

favour of PBT by improving the �lter. In the program that was used to produce

these plots, the �lter has a computational complexity linear in the size of the

grammar. In retrospect, this could have been handled rather more e�ciently.

Adding sophistication to handling the graph structured stack and parsing table

look-up could improve the performance in absolute terms; relatively it would make

less di�erence, however, as all programs would bene�t from it.

Testing sentence set A produces plots of a more varied nature, as sentences of

comparable length may di�er a lot in complexity. Using linear regression analysis,

we found the overall trend to be similar to the results for set B. A series of other

plots can be found in [Lankhorst and Sikkel, 1991].

The complexity of a parsing algorithm can be measured as a function of the

length of the input sentence. For formal languages this makes sense, as strings

5This work was done by Marc Lankhorst.

13.6 Empirical results 331

Figure 13.13: Sentence set B and grammar III

(i.e., computer programs) can be very long indeed. For natural languages this is a

rather doubtful measure. The size of the grammar, usually much larger than the

average sentence, is constant and therefore considered irrelevant. Moreover, con-

stant factors as discussed above are abstracted from. Nevertheless, sentence set B

shows the complexity of the algorithms rather nicely, because of the combinatorial

explosion of PP attachment ambiguities. For set B and grammars III and IV we

estimated the asymptotic complexity. These �gures, for what they are worth, are

shown in Figure 13.15. Similar computations for sentence set A con�rm the trend

that the complexity of PBT, using n parallel processes, is roughly O(
p
n) better

than Tomita's algorithm. Hence, waiting time and uneven load balancing accounts

for a factor O(
p
n) as well. See [Lankhorst and Sikkel, 1991], again, for all the

details.

Finally, we have estimated the speed of the PBT algorithm as a function of

the number of processors. The 37 processes for the sentence 13 of set B have been

allocated to any number of processors ranging from 1 to 37, with the processes

332 13. Parallel Bottom-up Tomita parsing

Figure 13.14: Sentence set B and grammar IV

algorithm grammar

III IV

Tomita O(n2:21) O(n2:61)

PBT, un�ltered O(n1:62) O(n2:19)

PBT, with �ltering O(n1:50) O(n1:86)

Figure 13.15: Estimated asymptotic complexity for set B

13.7 Related approaches 333

evenly distributed over the processors. Let p be the number of processors, then

there is natural number k such that k � 37=p < k + 1. The higher ranked

processes are grouped into clusters of k + 1, the lower ranked ones in clusters of

k per processor. The results are shown in Figure 13.16. The decline is sharpest

when incrementing p causes a decrease of k, in which case the processor handling

P0; : : : ; Pk�1 is relieved of one of its processes.

Figure 13.16: Performance vs. number of processors

13.7 Related approaches

A Parallel LR parser that also uses a \bottom-up" approach to parallelization has

been de�ned by Fischer [1975]. But the similarity to PBT is merely super�cial.

Fischer runs Synchronous Parsing Machines (SPM's) on various parts of the sen-

tence in parallel. An SPM tries to parse its part of the input until it hits upon

the starting point of its successor and then its merges with its successor. The

fundamental di�erence with PBT is that Fischer's algorithm really merges parse

stacks. PBT has separate parse stacks, but each processor may use nonterminals

334 13. Parallel Bottom-up Tomita parsing

reduced by other processors as if they were terminal symbols. Moreover, Fischer's

approach is only de�ned for LR grammars and cannot easily be extended to GLR.

Parallelization by allocating di�erent branches of the stack, cf. [Tanaka and

Numazaki, 1989], [Numazaki and Tanaka, 1990], [Thompson et al., 1991], was

already discussed in Section 13.1.

13.8 Conclusion

The Parallel Bottom-up Tomita parser has been developed as a cross-fertilization

of Tomita's algorithm with the bottom-up parallelization of Earley's algorithm.

This could be accomplished rather straightforwardly because, in Chapter 12, we

have shown that the algorithms of Tomita and Earley have underlying parsing

schemata that are almost identical.

The parallelization does not o�er a tremendous speed-up, but we nevertheless

we see it as a moderate success. Experimental results show a reduction of the

complexity in terms of the length of the sentence (for a few example grammars, not

in the worst case) of a factor O(
p
n) by using n processors. The remaining O(

p
n)

is spent on the slightly more complicated structure of the parser, communication,

and uneven load balancing. We have shown that parallel parsing is feasible.

A spin-o� e�ect of PBT is that the parsing table is constructed in linear time.

Construction of LR parsing tables for large grammars is very costly. Hence, a PBT

parser, also in a sequential implementation, is an useful tool for development and

debugging of grammars. Whenever the grammar is changed, a new parsing table

can be constructed on the y.

Chapter 14

Boolean circuit parsing

In the previous chapters we have discussed how parsing schemata can be instan-

tiated to parsing algorithms of various kinds. Such algorithms can be coded into

programming languages and then executed on a computer system.

As a last application of the theory of parsing schemata we will look at the

possibilities of coding schemata (or, to be precise, uninstantiated parsing systems)

directly into hardware. Several connectionist approaches to parsing have been

proposed, cf. Fanty, [1986], Selman and Hirst, [1987], Howells, [1988], Nakagawa

andMori, [1988], and Nijholt, [1990b], in which a large number of simple processing

units are linked into a highly interconnected network. For an arbitrary parsing

system we can de�ne a boolean circuit , which is a particularly simple kind of

connectionist network.

Because of the massive parallelism involved, connectionist implementations of

parsers can be really fast. This might be of interest for real-time systems. Further-

more, it has been argued that it is possible to integrate such a connectionist syn-

tactic parser with semantic and pragmatic analysis (cf., e.g., [Waltz and Pollack,

1988], [Cottrell, 1989]). We will not further go into these aspects, and concentrate

on syntactic analysis.

In order to investigate how fast parsing can be done in principle, we push par-

allelism to the limit and investigate logarithmic-time boolean circuits. We obtain

complexity bounds that conform to those known for fast parallel algorithms on

parallel random access machines. This result is of theoretical, rather than practi-

cal value, however, because the number of processing units and the connectivity

is unrealistically high.

This chapter is almost self-contained. Some basic understanding of parsing

systems and schemata is needed and there are some references to examples in

335

336 14. Boolean circuit parsing

Chapters 4{6. The general idea of logarithmic-time parsing, for the sake of sim-

plicity exempli�ed by binary branching grammars, is explained in detail.

A short recapitulation and some additional concepts speci�c to this chapter

are given in Section 14.1. We will make a tiny change in the notation of parsing

systems. Unlike the previous chapters, the focus is now on uninstantiated parsing

systems: a network is constructed that can parse arbitrary sentences according to

some speci�c grammar.

In 14.2 we present a recognizing network for binary branching grammars. In

14.3 this is extended to a parsing network that encodes a shared forest for a given

sentence. In 14.4 we �lter irrelevant parts from the network and briey discuss

how this network construction can be applied to arbitrary context-free grammars.

A logarithmic-time parallel parsing algorithm, which is a slight modi�cation

of Rytter's algorithm, is presented in Section 14.5. The fact that the algorithm

is indeed logarithmic-time is proven in 14.6. A boolean circuit implementation is

given in 14.7. In 14.8 we look at this problem from a more general perspective;

Rytter's algorithm can be seen as a speci�c instance of a more general notion of

conditional parsing systems that can be used to atten trees of deduction steps.

Related approaches are briey discussed in 14.9, conclusions follow in 14.10.

This chapter is based on a technical report [Sikkel, 1990a], parts of which have

been published in [Sikkel and Nijholt, 1990] and [Sikkel and Nijholt, 1991]. The

presentation has been improved, however, by making use of parsing schemata.

In particular the generalization to logarithmic-time boolean circuits for arbitrary

grammars follows straightforwardly as a combination of di�erent results.

14.1 Preliminary concepts

In this chapter, the emphasis is more on uninstantiated parsing systems than

instantiated parsing systems and parsing schemata. We will give a de�nition of

uninstantiated parsing systems that is slightly di�erent (from De�nition 4.23), so

as to allow these systems to be implemented in boolean circuits.

The notational conventions for context-free grammars that were introduced

in Section 3.1 apply throughout this chapter. We write G = (N;�; P; S) for a

context-free grammar with terminals N , nonterminals �, productions P and start

symbol S. We write L(G) for the language generated by G, i.e., a1 : : :an 2 L(G)

i� S)�a1 : : :an. We write A;B; : : : for nonterminal symbols; a; b; : : : for terminal

symbols; X;Y; : : : for arbitrary symbols; �; � : : : for arbitrary strings of symbols.

Positions in the string a1 : : :an are denoted by h; i; j; k; l;m.

An instantiated parsing system for some grammar G and an arbitrary string

a1 : : : an is a triple P(a1 : : : an) = hI;H;Di with I a set of items,H an initial set of

items (also called hypotheses) and D a set of deduction steps that allow to derive

14.1 Preliminary concepts 337

new items from already known items. The hypotheses in H encode the sentence

that is to be parsed. For a sentence a1 : : :an we take

H = f[a1; 0; 1]; : : : ; [an; n� 1; n]; [$; n; n+ 1]g; (14.1)

at the (n+1)-st position we always add an end-of-sentence marker $. Note that

di�erent hypotheses [a; i � 1; i] and [b; i � 1; i] may occur if the i-th word falls

into di�erent lexical categories. The hypotheses are always de�ned by (14.1).

Deduction steps in D are of the form

�1; : : : ; �k ` �:

The items �1; : : : ; �k 2 H [I are called the antecedents and the item � 2 I is

called the consequent of a deduction step. If all antecedents of a deduction step

are recognized by a parser, then the consequent should also be recognized. The

set of valid items V(P(a1 : : :an)) is the smallest subset of I that contains the

consequents of those deduction steps that have only hypotheses and valid items as

antecedents.

Whether the hypotheses H are part of the item set I or outside I does not

really matter. In previous chapters we have treated hypotheses as separate entities

(i.e., H \ I = ;), simply because that was more convenient for specifying parsing

systems. In this chapter we have strong reasons for changing this convention. We

will consider the items of the form [a; i � 1; i] to be included in I.1 So we �nd,

for any given string a1 : : :an that [$; n; n + 1] is the only hypothesis that is not

included in I.

An uninstantiatated parsing system speci�es all objects and deduction steps

that can be used to parse sentences according to some grammar G. We are inter-

ested in constructing parsers by means of boolean circuits. The construction of

a parser cannot be dependent on any particular string, so we have to include all

potential hypotheses for all strings.

De�nition 14.1 ((uninstantiated) parsing system)

An uninstantiated parsing system for some grammar G is a triple hI;H; Di with

the set of potential hypotheses H de�ned by

H = f[a; i� 1; i] j a 2 � [f$g ^ i � 1g (14.2)

An (uninstantiated) parsing system can be instantiated for a particular string

a1 : : :an by selecting a set of actual hypotheses H � H according to (14.1). 2

1The reason for this is that we want items of the form [a; i � i; i] to be included in the set
of valid items and the set of parsable items that will be introduced in in Section 14.3. When

we present a set of valid items, e.g., in the form of a CYK recognition table, we usually do not
include the end-of-sentencemarker. Thus the Figures 14.1 and 14.1, cover exactly the set of valid

resp. parsable items.

338 14. Boolean circuit parsing

In boolean circuits the remaining potential hypotheses HnH will still be included

in the system, but simply remain invalid.

We write Pfor an uninstantiated parsing system, and P(a1 : : :an) for an instan-

tiated parsing system. A parsing schema P de�nes a parsing system P= P(G)

for all G in some class of context-free grammars.

De�nition 14.2 (binary branching grammar)

A context-free grammar G is binary branching if all productions in P have the

form

A!XY:

We write BB for the set of binary branching context-free grammars. 2

Binary branching grammars are strongly related to, but formally di�erent from

grammars in Chomsky Normal Form. The former have the advantage that CYK

parsers are strictly binary as well. This will be of help when we convert linear-time

parsing networks to logarithmic-time parsing networks; such networks are easiest

to de�ne on binary systems.2

De�nition 14.3 (binary parsing system)

An (uninstantiated) parsing system P= hI;H; Di is called binary if

D � (H [I)2 � I;

that is, every deduction step has exactly 2 antecedents. 2

Example 14.4 (CYKbb)

As an example, we will de�ne a slightly modi�ed CYK parsing schema for binary

branching grammars. For an arbitrary grammar G 2 BB we de�ne a parsing

system P= hICYKbb;H; DCYKbbi by

ICYKbb = f[A; i; j] j A 2 N ^ 0 � i ^ i + 1 < jg

[f[a; i� 1; i] j a 2 � ^ i � 1g;

DCYKbb = f[X; i; j]; [Y; j; k] ` [A; i; k] j A!XY 2 Pg;

and H according to (14.2).

The system can be instantiated by choosing a set of hypothesis H � H for a string

a1 : : : an according to (14.1). 2

2Generalization to parsing systems of arbitraryarity will follow later. So this is not an essential

restriction on the types of grammars and languages that can be handled (binary branching
grammars do not generate sentences of length 1 and 0) but a temporary restriction to simplify

the presentation.

14.2 Recognizing networks 339

Example 14.5

As a more concrete example, we will look at the instantiated parsing system

CYKbb(G2)(the ies like the marmelade):

The grammar G2 was de�ned (in Chapter 2) by the productions

S ! NP VP j S PP

NP ! *det *n j NP PP ;

VP ! *v NP ;

PP ! *prep NP :

Lexical categories of the relevant words are de�ned by

*n ! ies j marmelade;

*det ! the;

*v ! ies j like;

*prep ! like;

but in our binary approach these are not considered to be part of the grammar.

So we �nd a set of hypotheses

[*det ; 0; 1]; [*n; 1; 2]; [*v ; 1; 2]; [*v ; 2; 3]; [*prep; 2; 3];

[*det ; 3; 4]; [*n ; 4; 5]; [$; 5; 6]:

The set of valid items can be represented in the usual upper triangular CYK

recognition table. A symbol X is written into table entry Ti;j if [X; i; j] is valid.

The table representing the valid items for the given grammar and sentence is shown

in Figure 14.1. 2

In Chapters 3 and 4 we have enhanced parsing systems with a notion of cor-

rectness. For each sentence length n there is a set of �nal items F
(n)
� I. An

item can be seen as the set of trees that conform to the properties speci�ed by the

item. A �nal item, then, can be seen as a set of parse trees. In a correct parsing

system, a �nal item is valid if and only if it contains a parse tree for the given

sentence. In the CYK case there is only a single �nal item for each n: we �nd

F
(n) = f[S; 0; n]g. In general, there can be several �nal items. In an Earley-type

parsing system (cf. Section 4.6), we have �nal items of the form [S!�; 0; n], as

many as there are productions with left-hand side S.

14.2 Recognizing networks

Before we de�ne boolean circuits, we will �rst augment parsing systems with a

special item accept , that is valid if and only if a1 : : : an 2 L(G). In a recognizing

network, the well-formedness of the string that is being parsed ran be read o� by

inspecting the status of a special accept node.

340 14. Boolean circuit parsing

0,1

�d

0,2

NP

0,3 0,4 0,5

S

1,2
�n
�v

1,3 1,4 1,5

2,3
�p

�v

2,4 2,5
PP

VP

3,4

�d

3,5

NP

4,5

�n

Figure 14.1: CYK recognition table for Example 14.5

De�nition 14.6 (augmented parsing system)

For each (uninstantiated) parsing system hI;H; Di with H as in (14.2), an aug-

mented parsing system P̂= hÎ;H; D̂i is de�ned by

Î = I [facceptg;

D̂ = D [f�; [$; i; i+ 1] ` accept j i � 0 ^ � 2 F (i)
g:

with F (i) the set of �nal items for a string of length i.

An instantiated parsing system hI;H;Di, likewise, can be extended to an aug-

mented instantiated parsing system hÎ;H; D̂i. In that case, the extension to D̂

will be ine�ective for any i 6= n. 2

Corollary 14.7

Let P by a correct parsing system (cf. De�nitions 4.20 and 4.22) and P̂ the aug-

mented system of P. Then it holds for any a1 : : : an 2 �
� that

accept 2 V(P̂(a1 : : : an)) if and only if a1 : : :an 2 L(G). 2

We will now de�ne a boolean circuit for an arbitrary parsing system and strings

up to some maximum string length `, based on the connectionist network of Fanty

[1985, 1986]. A boolean circuit can be seen as a directed graph, where the nodes

are processing units and the edges are connections between these processing units.

A node has a set of inputs (incoming connections from other nodes) and a set of

outputs (outgoing connections to other nodes). Each node can be in two states:

14.2 Recognizing networks 341

activated (\on") or not activated (\o�"). If a node is \on", it sends an \on" signal

on all of its outputs; If a node is \o�", it sends an \o�" signal on all of its outputs.

The activation of a node is a function of the signals that it receives on its inputs.

We will only use two di�erent kinds of nodes.

� An or-node is \on" if it receives at least one \on" signal (and an arbitrary

number of \o�" signals).

We will indicate or-nodes by double parentheses (()).

� An and-node is \on" if it does not receive any \o�" signal (and an arbitrary

number of \on" signals).

We will indicate and-nodes by double acute angular brackets � �.

A parsing system has an in�nite number of items and deduction steps. For

implementation in a boolean circuit, however, it is required that the system be

�nite. We will obtain this by assuming a maximum string length ` and building

a network that can handle all strings a1 : : : an with 0 � n � `. For any given ` we

can de�ne a restricted augmented system P̂̀ = hÎ`;H`; D̂`i, that comprises the

part of P̂that is relevant for strings up to a length `. We will not take the trouble

to give a formal de�nition of P̂̀ , for any particular system it will always be clear

which items are in Î` and which are in ÎnÎ`; similarly for H` and D̂`.

It is not necessarily true that restricting a system to a maximum sentence

length makes it �nite. Let G be a cyclic grammar, and T a tree-based parsing

system for G. That is, every single tree is a separate item. Strings of �nite length

generate an in�nite number of trees for cyclic grammars, hence a system that is

restricted to some maximum string length will still be in�nite. In an item-based

system it is possible (but not necessarily the case) that this in�nite number of trees

is represented by a �nite number of items. E.g. the Earley schemata in Examples

4.32 and 4.34, when applied to cyclic grammars, will yield �nite restricted parsing

systems.

Example 14.8

Let G be a binary branching grammar. The parsing system P in the Example

14.4 can be augmented to P̂ and restricted to P̂̀ as follows. The system P̂̀ =

hÎ`;H`; D̂`i is de�ned by

Î` = f[X; i; j] 2 I j j � `g [facceptg;

H` = f[a; i� 1; i] j a 2 � ^ 1 � i � `g [f[$; i; i+ 1] j 0 � i � `g;

D̂
(1)

`
= f[X; i; j]; [Y; j; k] ` [A; i; k] j A!XY 2 Pg;

D̂
(2)

`
= f[S; 0; i]; [$; i; i+ 1] ` acceptg;

D̂` = D̂
(1)

`
[D̂

(2)

`
:

342 14. Boolean circuit parsing

Note that it is not necessary to de�ne bounds on the position markers in D̂`. All

items in a deduction step, by de�nition, must be drawn from the item set of the

hypotheses. That is, it holds by de�nition that D̂` � }�n(Î` [H`) � Î`. 2

De�nition 14.9 (recognizing network)

Let P= hI;H; Di be an arbitrary parsing system, and P̂̀ the augmented system

restricted to some maximum sentence length `. A recognizing network for P̂̀ is a

boolean circuit that has the following nodes:

� an or-node ((�)) for each � 2 Î` [H`;

� an and-node ��1; : : : ; �k; �� for each �1; : : : ; �k ` � 2 D̂`;

and the following connections:

� an edge ((�i)) �!��1; : : : ; �k; �� for each �1; : : : ; �k ` � 2 D̂`

and 1 � i � k;

� an edge ��1; : : : ; �k; ���! ((�)) for each �1; : : : ; �k ` � 2 D̂`. 2

Initially, all nodes are \o�". It is assumed that the valid hypotheses are activated

(and will remain to be activated) by external stimuli, derived from the \real" sen-

tence. When this happens, a wave of activation will spread through the network.

It is easiest to think of time as divided into discrete clock ticks. At t = 0,

only the valid hypotheses are \on". At t = i, for i > 0, the outputs of a node

are determined as a function of the inputs at t = i � 1. From the set-up of the

recognizing network it is clear that some \o�" nodes will be turned \on" at some

moment in time, but no \on" node will be turned \o�" again. If the network is

�nite, it must become stable after a �nite amount of time.

An example of a tiny part of a network (after Fanty [1986]) is shown in Figure

14.2. Suppose that there is a production A!BC, then there are three and-nodes

for deduction steps that may activate a node (([A; 2; 8])) from valid pairs of nodes

(([B; 2; j])), (([C; j; 8])) for j = 4; 5; 6. Hence (([A; 2; 8])) will be activated if there is

(at least) one pair of applicable B and C nodes where both nodes are \on".

Theorem 14.10 (validity in a �nite recognizing network)

Let P be a parsing system and P̂̀ for some maximum string length ` be �nite.

Let a1 : : : an with n � ` be the input to the recognizing network according to

De�nition 14.9. Then the network will stabilize after a �nite number of clock

ticks. Moreover, A node ((�)) for � 2 Î` will be \on" in the stable network if and

only if � 2 V(P̂(a1 : : :an)).

Proof: trivial. 2

Consequently, the accept node will be activated if and only if a1 : : :an 2 L(G).

14.3 Parsing networks 343

��
��
or

[B; 2; 4]

�
�
�
�
���

��
��
or

[C; 4; 8]

C
C
C
C
CCO

and

��HH
HH��

��
��
or

[B; 2; 5]

�
�
�
�
���

��
��
or

[C; 5; 8]

C
C
C
C
CCO

and

��HH
HH��

��
��
or

[B; 2; 6]

�
�
�
�
���

��
��
or

[C; 6; 8]

C
C
C
C
CCO

and

��HH
HH��

��
��
or

[A; 2; 8]

6

��
��

��
��

�*

HH
HH

HH
HH

HY

Figure 14.2: A fraction of a recognizing network

14.3 Parsing networks

A recognizing network computes the correctness of a string. The accept node

will be activated if and only if the presented string constitutes a valid sentence.

Furthermore, each node that represents an item will be activated if and only if the

item is valid.

It is not possible to yield a set of parses as output of a boolean circuit (unless

we add nodes that could represent all possible parse trees). But we can do better

than o�er only a set of valid items. We can make a distinction between

� valid items that represent a partial parse tree for the given string,

� valid items that do not represent any tree that is part of a parse tree for the

given string.

The former type of valid items will be called parsable items.

The parsable items for Example 14.5 are shown in Figure 14.3. The item

[PP ; 2; 5] in Figure 14.1 has been deleted; it is valid, but not used in the context

of the entire sentence. Similarly, the hypotheses that \ies" is a verb and \like" is

a preposition are valid but not parsable for this sentence.

In the sequel we will extend recognizing networks to parsing networks, that

compute all parsable items for a given sentence. But �rst, we give a formal de�-

nition of parsability.

344 14. Boolean circuit parsing

0,1

�d

0,2

NP

0,3 0,4 0,5

S

1,2

�n
1,3 1,4 1,5

2,3

�v

2,4 2,5

VP

3,4

�d

3,5

NP

4,5

�n

Figure 14.3: CYK table with parsable items for Example 14.5

De�nition 14.11 (parsable items)

Let P̂ = hÎ;H; D̂i be an augmented parsing system, V = V(P̂(a1 : : :an)) the

set of valid items for some string a1 : : : an. The set of parsable items W =

W(P̂(a1 : : : an)) is de�ned as the smallest set satisfying

(i) if accept 2 V then accept 2 W;

(ii) if � 2 W and there are �1; : : : ; �k 2 V such that �1; : : : ; �k ` � 2 D̂

then �1; : : : ; �k 2 W .

For an unaugmented parsing system P= hI;H; Di and a string a1 : : :an, an item

� 2 I is called parsable if it is parsable in P̂ for a1 : : : an. 2

The following corollary can be employed for the local design of the network:

Corollary 14.12

Let P̂= hÎ;H; D̂i be an augmented parsing system. An item � 6= accept in I is

parsable for some string a1 : : :an if and only if there are �1; : : : ; �k; � 2 Î such that

(i) �; �1; : : : ; �k are valid,

(ii) �; �1; : : : ; �k ` � 2 D̂,

(iii) � is parsable. 2

14.3 Parsing networks 345

Armed with De�nition 14.11 and Corollary 14.12 we can now extend the rec-

ognizing network to a parsing network. A node that represents an item in the

recognizing network will be activated i� the item is valid. A supplementary node

in the parsing network will be activated i� the item is parsable. After accept has

been turned \on", a wave of activation spreads through the supplementary part

of the network in reverse direction.

De�nition 14.13 (parsing network)

Let P= hI;H; Di be an arbitrary parsing system, and P̂̀ the augmented system

restricted to some maximum sentence length `. A parsing network for P̂̀ is a

boolean circuit that consists of the following nodes:

� or-nodes ((�)) and ((P�)) for each � 2 Î` [H`;

� and-nodes ��1; : : : ; �k; �� and �P �1; : : : ; �k; ��

for each �1; : : : ; �k ` � 2 D̂`;

and the following connections:

� ((accept)) �! ((Paccept));

� ((�i)) �!��1; : : : ; �k; �� for �1; : : : ; �k ` � 2 D̂`

and 1 � i � k,

� ��1; : : : ; �k; ���! ((�)) for �1; : : : ; �k ` � 2 D̂`,

� ��1; : : : ; �k; ���!�P �1; : : : ; �k; �� for �1; : : : ; �k ` � 2 D̂`,

� ((P�)) �!�P �1; : : : ; �k; �� for �1; : : : ; �k ` � 2 D̂`,

� �P �1; : : : ; �k; ���! ((P�i)) for �1; : : : ; �k ` � 2 D̂`

and 1 � i � k. 2

The supplementary P nodes are used to distinguish the parsable items from the

valid nonparsable items. When these (and the connected edges) are deleted, the

recognizing network of De�nition 14.9 remains. An example of a fraction of a

parsing network in shown in Figure 14.4. This is a simpli�cation of the recognizing

network of Fanty [1986].3

3 In Fanty's network, there is (in our notation) also an edge ((�)) �! ((P�)) for every � 2 Î`.
Moreover, a node ((P�)) is a special kind of \and-or-node" that ors all signals coming from
above and ands the result this with the signal from ((�)). This extra edge can be deleted because
any node�P �; �1; : : : ; �k; �� that provides input \from above" to ((P�)) can be activated only if
((�)) has been activated. More importantly, the special type of node introduced by Fanty reduces
to a conventional or-node. Fanty's original design | which was duly copied by Nijholt [1990b]
and Sikkel [1990a] | is correct but unnecessarily complicated.

346 14. Boolean circuit parsing

��
��
or

[B; 2; 4]

�
�
�
�
���

��
��
or

[C; 4; 8]

@
@

@
@

@@I
and

��HH
HH��
�
�
�
�
���

-

��
��
or

[A; 2; 8]

��
��
or

P[B; 2; 4]

��
��
or

P [C; 4; 8]

and

��HH
HH��

�
�

�
�

��	

@
@
@
@
@@R

��
��
or

P[A; 2; 8]

�
�

�
�

��	
� � �

� � �

Figure 14.4: A fraction of a parsing network

Theorem 14.14 (validity in a �nite parsing network)

Let Pbe a parsing system and P̂̀ for some maximum string length ` be �nite. Let

a1 : : : an with n � ` be the input to the parsing network according to De�nition

14.13. Then the network will stabilize after a �nite number of clock ticks.

A node ((P�)) for � 2 Î` will be \on" in the stable network if and only if � 2

W(P̂(a1 : : : an)).

Furthermore, a node �P �1; : : : ; �k; �� will be \on" in the stable network if and

only if f�1; : : : ; �k; �g � W(P(a1 : : : an)).

Proof: straightforward from the above discussion. 2

In a CYK-like network (and in many other networks that are derived from

sensible parsing schemata) we can see the activated P nodes a a representation

of a shared parse forest (in Chapters 12 and 13 also called packed shared parse

forest). A parse node ((P [X; i; j])) will be activated if and only if X occurs in a

parse of a1 : : : an as a constituent that spans the substring ai+1 : : : aj. Moreover,

any pair of constituents Y; Z into which X can be decomposed can be found by

inspecting the activity of the nodes �P [Y; i; k]; [Z; k; j]; [X; i; j]�.

14.4 Some further issues 347

14.4 Some further issues

In the previous sections we have de�ned the basics of boolean circuit implemen-

tations of parsing schemata. There are some further issues, treated at length in

[Sikkel, 1990a], that can be dealt with rather tersely here. Most of it follows

directly from results that have been covered elsewhere in this book.

To start with, one can apply meta-parsing , as it has been called by Nijholt

[1990b]. The parsing network according to De�nition 14.13 may contain spurious

nodes. If an item [A; i; j] is not parsable for any well-formed sentence, then it can

just as well be deleted from the network. The network need only contain nodes

for potentially parsable items. The necessarily unparsable items can be separated

from the potentially parsable ones as follows. Let hI;H; Di be an uninstantiated

parsing system, and hÎ`;H`; D̂`i the augmented system for some maximum string

length `. We can instantiate the system by choosing H = H`, that is, validating

all hypotheses. If we run the (simulated) network, then a parse node ((P�)) will

be activated if and only if there is some string a1 : : : an with n � ` such that

� 2 W(P̂̀ (a1 : : : an)).

If ((P�)) is not activated by meta-parsing, then the item � can be deleted from

the parsing system, and the nodes ((�)) and ((P�)) can be deleted from the network.

The same applies to any deduction step in which a necessarily unparsable item

appears, either as antecedent or as consequent.

The above meta-parsing algorithm takes for granted that we are are only inter-

ested in valid sentences. If a string is o�ered that is not contained in the language,

we might be interested in �nding at least those parts that can be recognized. To

that end, we can employ a weaker meta-parsing algorithm that discards those items

� for which � 62 V(P(a1 : : :an)) for any string. The weak meta-parsing algorithm

yields the regular subsystem that has been discussed in Section 4.5.

The complexity of a boolean circuit parser is measured as follows. The size of

the network is determined by the number of nodes. The total number of connec-

tions between nodes is linear in the size of the network, if the number of antecedents

for any individual deduction step is limited by some small constant. This will be

the case for all parsing systems that we discuss here.4 As the time complexity of

a network we count the number of clock ticks that is needed to obtain the �nal,

stabilized situation.

Note that any individual network is �nite. The size of the network is measured

as a function of the maximum string length ` and the size jGj of the grammar (cf.

4A counterexample to this assumption is, for example, theGCYK parsing schema (cf. Exam-
ple 5.20) applied to grammars with arbitrarily large right-hand sides of productions. This may
yield systems where the number of connections is quadratic, rather than linear, in the number

of nodes.
So, to be formally correct, we should add connectivity as a complexity factor and in all applicable

cases argue that the connectivity is of the same order as the size of the network.

348 14. Boolean circuit parsing

equation (11.4) on page 256). Let P̀ = hI`;H`; D`i be a network, restricted to

some maximum string length `. The size of the network, then, is simply O(jI`j+

jH`j+ jD`j).

For a CYK network we �nd a time complexity of O(n) and a network size of

O(jGj`3): the largest factor is the number of deduction steps [X; i; j]; [Y; j; k] `

[A; i; k] for each production A!XY and arbitrary 0 � i < j < k � `.

Fanty's network is de�ned only for binary branching grammars. The same

technique can be applied to de�ne a boolean circuit parser for arbitrary context-

free grammars. In Section 3 of [Sikkel, 1990a], Fanty's technique is applied to

construct a boolean circuit parser based on the algorithm of Chiang and Fu [1984]

(cf. Example 6.20). A similar network (in fact a simpler one, see footnote 3 on

page 345) is obtained by applying the network construction of De�nition 14.13 to

a parsing system ChF(G) for an arbitrary grammar G 2 CFG.

Most parsing systems have a few initial deduction steps that have no an-

tecedents. In a parsing network, these are mapped onto and-nodes with no in-

puts. In the de�nition of and-nodes we have anticipated this: an and-node will

be activated if none of its inputs is o�. This is clearly the case for and-nodes

without input, hence all nodes of this type will be active at time t = 1.

14.5 Rytter's algorithm

Further on in this chapter, in Section 14.7, we will de�ne a boolean circuit imple-

mentation of Rytter's algorithm. The recognition part of such a network follows

directly from the validity of the Rytter parsing schema and the network construc-

tion of De�nition 14.9. Extending the recognizing network to a parsing network

can | in this particular case | be done rather more simple than with the con-

struction of De�nition 14.13.

The more di�cult issue is to prove that the network will stabilize in logarithmic

time. A formal proof that Rytter's algorithm works in logarithmic time is given

in Section 14.6. In this section we will introduce Rytter's algorithm and provide

the intuition on which the proof in 14.6 is based.

As before, we only consider binary branching grammars. This restriction is

not essential, but of great help to simplify the notation. In Section 14.8 we will

briey discuss how the approach can be generalized to parsing systems for arbitrary

context-free grammars.

The easiest way to explain Rytter's algorithm is to start with the items that are

used. CYK uses items of the form [X; i; j]. Such an item is valid ifX)�ai+1 : : :aj .

Rytter's algorithm, in addition, uses items [A; h; k;X; i; j]. Such an item is valid

if

A)�ah+1 : : : aiXaj+1 : : : ak:

14.5 Rytter's algorithm 349

This can be seen as a CYK item with a gap; the missing part [X; i; j] still has to

be �lled, in order to obtain the validity of [A; h; k]. See Figure 14.5.

�
�
�
�
�
�

A
A
A
A
A
AA

A
A

h = i j k

A

X

�
�
�
�
�
�

A
A
A
A
A
A

�
�
A
A

h i j k

A

X

�
�
�
�
�
�

A
A
A
A
A
A�

�
�

h i j = k

A

X

Figure 14.5: Di�erent kinds of Rytter items

We could also see such an item as a conditional CYK item: validity of [A; h; k;

X; i; j] can be interpreted as

if [X; i; j] is valid then [A; h; k] is also valid:

Let A!XY be a production in P . A CYK deduction step [X; i; j]; [Y; j; k] `

[A; i; k] can be re�ned into two steps:

[X; i; j] ` [A; i; k;Y; j; k]

[A; i; k;Y; j; k]; [Y; j; k] ` [A; i; k]

The gap in the intermediate item is rightmost . Another possibility to deduce

[A; i; j] is by means of an item with a leftmost gap [A; i; k;X; i; j].

Speci�c for Rytter's algorithm is the addition of a simple combination rule:

two conditional items can be combined into a single one if the \outside" of one

item matches the \inside" of another item. A graphical impression of the di�erent

types of deduction steps in Rytter's algorithm is shown in Figure 14.6.

A parsing schema for Rytter's algorithm for binary branching grammars is

de�ned as follows. This is a minor modi�cation of the schema that was presented

in Example 5.23.

Schema 14.15 (Rbb)

For an arbitrary binary branching grammar G 2 BB we de�ne a parsing system

PRbb = hIRbb;H; DRbbi by

I
(1) = f[A; i; j] j A 2 N ^ 0 < i ^ i + 1 < jg

[f[a; i� 1; i] j a 2 � ^ i � 1g;

I
(2) = f[A; h; k;X; i; j] j [A; h; k] 2 I ^ [X; i; j] 2 I

^ h � i � j � k ^ (h 6= i or j 6= k)g

350 14. Boolean circuit parsing

�
�
�
�

A
A
A
A

i j

X

`

�
�
�
�
�
�

A
A
A
A
A
A�

�
�

i j k

A

Y

�
�
�
�

A
A
A
A

j k

Y

`

�
�
�
�
�
�

A
A
A
A
A
AA

A
A

i j k

A

X

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

�
�
�
�

A
A
A
A

h i l m

A

B

,

�
�
�
�
�
�

A
A
A
A
A
A

�
�
A
A

i j k l

B

X `

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

�
�
A
A

h j k m

A

X

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

�
�
�

A
A
A

h i j k

A

X

,

�
�
�
�

A
A
A
A

i j

X

`

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

h k

A

Figure 14.6: Di�erent types of deduction steps in Rytter's algorithm

14.5 Rytter's algorithm 351

IRbb = I(1) [I(2);

H = f[a; i� 1; i] j a 2 � ^ i � 1g; [f[$; i; i+ 1] j i � 0g;

D(1a) = f[X; i; j] ` [A; i; k;Y; j; k] j A!XY 2 Pg;

D(1b) = f[Y; j; k] ` [A; i; k;X; i; j] j A!XY 2 Pg;

D(2) = f[A; h; k;X; i; j]; [X; i; j] ` [A; h; k]g

D(3) = f[A; h;m;B; i; l]; [B; i; l;X;j; k] ` [A; h;m;X; j; k]g

DRbb = D(1a) [D(1b) [D(2) [D(3):

The system PRbb can be augmented to P̂Rbb in the usual way, and restricted to

a maximum sentence length ` by considering only items [X; i; j] with j � ` and

[A; h; k;X; i; j] with k � `. 2

Combining pairs of conditional items by D(3) is the key to logarithmic-time

parsing. This will be shown by the following example.

Example 14.16

Consider a grammar de�ned by

S ! aS j ab

and the string aaab. A parse tree for this string is shown in Figure 14.7.

a

a

a

S

S

S

b

�
��

A
AA

�
��

A
AA

�
��

A
AA

Figure 14.7: A parse tree for aaab

The CYK algorithm will need n steps to parse a string of length n, no matter how

much parallelism is employed. A parallel Rytter parser will process a string aaab

as follows. From each of the hypotheses [a; i�1; i] we can obtain conditional items

[a; 0; 1] ` [S; 0; 4;S; 1; 4];

[a; 1; 2] ` [S; 1; 4;S; 2; 4];

[a; 2; 3] ` [S; 2; 4; b; 3; 4]:

352 14. Boolean circuit parsing

The antecedents of these three deduction steps, in combination with the hypothesis

[b; 3; 4], can be combined into a �nal item by pairwise combination. We have

[S; 0; 4;S; 1; 4]; [S; 1; 4;S; 2; 4] ` [S; 0; 4;S; 2; 4];

[S; 2; 4; b; 3; 4]; [b; 3; 4] ` [S; 2; 4];

and, subsequently,

[S; 0; 4;S; 2; 4]; [S; 2; 4] ` [S; 0; 4]:

It is clear that (for this grammar) a parallel Rytter parser will parse any sen-

tence in logarithmic time. That this also holds for arbitrary grammars, remains

to be proven. 2

In order to deepen our understanding of what is going on here, we will look

at an implementation of the above Rytter system for an arbitrary grammar on

a parallel random access machine (PRAM). This is an often used abstract ma-

chine model for the de�nition of parallel algorithms. A PRAM consists of an (in

principle unbounded) number of di�erent processors that have access to a central

shared memory. There are in fact various PRAM models, that di�er according

the possibilities for concurrent memory access. We will make use of a so-called

WRAM : di�erent processors may read the same memory location at the same

time; concurrent writing into the same memory location is allowed only if these

processors write the same value.

Algorithm 14.17 (logarithmic-time recognizer for binary branching grammars)

For the sake of simplicity we will only consider the recognition algorithm, and do

not (yet) bother to determine a parse forest. We consider an instantiated parsing

system for some string a1 : : :an, so we can restrict the system to the actual string

length n, rather than some arbitrary maximum string length `.

We write � as a generic notation for CYK items in I(1)
n

and h� �i as a

generic notation for items in I(2)
n
. If � = [A; h; k] and � = [X; i; j] then h� �i =

[A; h; k;X; i; j].

For each item � 2 I(1)
n

we introduce a boolean predicate recognized(�);

for each item h� �i 2 I(2)
n

we introduce a boolean predicate proposed(h� �i).

At the end of the algorithm, recognized(�) will be true i� � 2 V(P(a1 : : :an)) and

proposed(h� �i) will be true i� h� �i 2 V(P(a1 : : :an)). We de�ne procedures

initialize, propose, combine, and recognize as follows.

procedure initialize

begin

for all � 2 I(1)
n

do recognized(�) := false od;

for all h� �i 2 I(2)
n

do proposed (h� �i) := false od;

for all � 2 H do recognized(�) := true od

end;

14.5 Rytter's algorithm 353

procedure propose

begin

for all A!XY 2 P and appropriate 0 � i � j � k � n

do if recognized([X; i; j])

then proposed ([A; i; k;Y; j; k]) := true fi;

if recognized([Y; j; k])

then proposed ([A; i; k;X; i; j]) := true fi

od

end;

procedure combine

begin

for all h� �i; h� �i 2 I(2)
n

do if proposed (h� �i) and proposed(h� �i)

then proposed (h� �i) := true fi

od

end;

procedure recognize

begin

for all h� �i 2 I(2)
n

do if proposed (h� �i) and recognized(�)

then recognized(�) := true fi

od

end;

It is clear that each of the above procedures can be executed in constant time on a

WRAM, given O(n6) processors and O(n4) shared memory. With some more care

the space complexity can be reduced to O(n2) (cf. Gibbons and Rytter, [1988]),

but at the expense of some clarity. For our boolean circuit implementation this is

irrelevant; it does not use memory. A variant of Rytter's algorithm can now be

de�ned as follows.5

procedure Rytter's algorithm (modi�ed)

begin

initialize;

propose;

repeat d 2logne times

5In the original version of Rytter's algorithm the initialization consists of initialize only, a step
comprises a call to propose , combine , combine , recognize in that order. The reason to change this
is that it allows introduction of loop invariants (14.5) and (14.6). Gibbons and Rytter employ a
rather more complicated loop invariant, for which reason their proof is rather more cumbersome.
The propose , combine , and recognize steps were called activate, square and pebble, originally.
As the term activate had to be changed, so as to avoid confusion with activation of a node, we
have also replace the other terms with words that seem more appropriate in this context.

354 14. Boolean circuit parsing

begin

recognize;

propose ;

combine ;

combine

end;

if recognized([S; 0; n]) then accept else reject fi

end;

where d 2 logne is the smallest natural number � 2logn. Hence, for example, 5

steps su�ce for any sentence of up to 32 words. For a sentence of 1000 words only

10 steps are needed (but at the cost of some 1018 processors, which is not very

realistic). 2

For the CYK algorithm we used an upper triangular recognition matrix TCYK.

For Rytter's algorithm we can use a similar recognition structure TR, which is

not a matrix but a pyramid. Table entries have three indices: the leftmost and

rightmost position marker (as with CYK) and, thirdly, the size of an item. The

size is the number of words in the string that is covered by an item. Formally:

size([X; i; j]) = j � i for any [X; i; j] 2 I(1); (14.3)

size([A; h; k;X; i; j]) = size([A; h; k])� size([X; i; j])

= h� k � i+ j

for any [A; h; k;X; i; j]2 I(2):

(14.4)

A recognized item of the form [X; i; j] will be stored in table entry Ti;j;j�i; a

proposed item of the form [A; h; k;X; i; j] will be stored in table entry Th;k;h�k�j+i.

All items of size 1 will be stored in the bottom layer of the table; all items of size

k in the k-th (horizontal) layer. Note, furthermore, that all cubes Ti;j;k on the

surface satisfy k = j � i. Hence, all proper CYK items will be stored in these

surface cubes. Items [A; h; k;X; i; j] will be in a cube inside the table, that is

located exactly j� i positions down from Th;k;k�h. Hence, in Figure 14.8 only the

proper CYK items are visible; proposed items with a gap are hidden under the

surface. If the hidden cubes are deleted, the conventional CYK table remains.

The reason for constructing the pyramid-shaped table in Figure 14.8 is that

it can be employed to visualize the logarithmic nature of Rytter's algorithm. We

can cut the table into slices, such that each slice will be �lled by a single step of

the algorithm. This is shown in Figure 14.9. In the above de�nition of Rytter's

algorithm it is in fact allowed that in step i items are recognized in some slice

j > i. The algorithm can be improved by regarding in step i only those items that

should go into slice i. But the important thing to notice, whether or not such a

�lter is applied, is that every valid item in slice i must have been recognized after

i steps.

14.5 Rytter's algorithm 355

0,1,1

*d

""
1,2,1

*n

""
2,3,1

*v

""
3,4,1

*d

""
4,5,1

*n

""
5,6,1

*p

""
6,7,1

*d

""
7,8,1

*n

"" ""
""

""
""

""

""
""

""
""

""

0,2,2

NP

""
1,3,2
""

2,4,2
""

3,5,2

NP

""
4,6,2
""

5,7,2
""

6,8,2

NP

"" ""
""

""
""

0,3,3
""

1,4,3
""

2,5,3

VP

""
3,6,3
""

4,7,3
""

5,8,3

PP

"" ""
""

""
"

0,4,4
""

1,5,4
""

2,6,4
""

3,7,4
""

4,8,4
"" ""

""
""

0,5,5

S

""
1,6,5
""

2,7,5
""

3,8,5

NP

"" ""
""
"

0,6,6
""

1,7,6
""

2,8,6

VP

"" ""
""

0,7,7
""

1,8,7
"" ""

"

0,8,8

S

"" ""

Figure 14.8: An example of a Rytter recognition table

356 14. Boolean circuit parsing

*d

""

*n

""
"

*v

""
""

*d

""
""
"

*n

""
""

""

*p

""
""

""

*d

""
""

""
""

*n

""
""

""
""

""

""
""

""
""

""

""
""

""
""

""

NP

""
""
"
""

""

NP

""
""
"

""
""

""

""
""

""
"

NP

""
""

""
""

""
""

""
""

""
""

""
""

""
""

VP

""
""

""

PP

"" ""
""

""
"

""
""

""
"

""
""
"
""

""

""
""
"

""
""

""

""
""

""

S

""
""

""

NP

"" ""
""
"

""
""
"

""
""

VP

"" ""
""

""
"" ""

"
S

"" ""

initialization

step 1

step 2

step 3

Figure 14.9: Visualization of steps in Rytter's algorithm

14.6 Correctness of Rytter's algorithm 357

That is, the algorithm satis�es the following loop invariant statements:

if � 2 V(P(a1 : : : an)) and size(�) � 2k

then recognized(�) after k steps;
(14.5)

if h� �i 2 V(P(a1 : : : an)) and size(h� �i) � 2k

then proposed (h� �i) after k steps.
(14.6)

A proof will be given in the next section.

One may wonder why it is necessary to include two calls to combine within

a single step. For the grammar in Example 14.16, a single combine per step will

clearly be su�cient. That the second combine is necessary to guarantee the loop

invariants (14.5) and (14.6) is shown by the following example.

Example 14.18

Consider a grammar that has the productions

S ! SA j aa;

A ! bB;

B ! SS:

We can de�ne a series of trees �1; : : : ; by

�1 = hS!aai;

�k+1 = hS ; �kb�k�ki;

see Figure 14.10. It is easy to verify that, when only a single combine is executed

per step, recognition of �k+1 will take two more steps than recognition of �k, while

size(�k+1) = 3:size(�k)+1. But to stay within the desired complexity bounds, two

more steps should be able to cope with a size multiplication by 4. Hence, for large

enough k this must fail. The reader may verify that �5 yields a string of length

202. If only one combine operation per step were allowed, then it would take 9

steps to compute V(P(a1 : : : a202)), while d
2 log 202e = 8. 2

14.6 Correctness of Rytter's algorithm

The soundness of Rytter's algorithm, as presented in the previous section, is

trivially obtained from the fact that each of the procedures initialize, propose,

combine , and recognize is sound. The completeness of the algorithm follows from

the loop invariants (14.5) and (14.6). The major task is to establish these loop

invariants.

The correctness proof that is given here may seem far from trivial. It should be

noted, however, that it is rather more simple than the original proof of the \pebble

358 14. Boolean circuit parsing

�k

b

�k

S

A

B

�k

�
��

A
AA

�
��

A
AA

�
��

A
AA

�k+1 =

a

S

a

�
��

A
AA

�1 =

Figure 14.10: Recursive de�nition of tree �k in Example 14.18

game" by Gibbons and Rytter [1988]. Space complexity on a WRAM is irrelevant

for our purpose of constructing a boolean circuit implementation. At the expense

of O(n4), rather than O(n2) space complexity we have been able to introduce a

simple loop invariant | and to simplify the presentation of the algorithm. The

sliced pyramid in Figure 14.9 only applies to our version of Rytter's algorithm,

not to the original algorithm.

We will introduce a few ad hoc concepts that are useful to simplify the proof.

Firstly, for easy reference, the operations within a some step k are numbered as

follows:

k.1 recognize

k.2 propose

k.3 combine

k.4 combine

Next, we assume that I(2) contains items of the form h� �i for any � 2 I(1).

Such items have zero size (the item is nothing but a large gap) but will turn out

to be practical as a boundary case. It is assumed that h� �i 2 V(P(a1 : : :an)) for

any �. Moreover, it is assumed that proposed (h� �i) has been set to true in the

initialization phase.

Furthermore, we replace the size function on items by a rank function that cor-

responds to the step number after which an item must have been recognized/pro-

posed (if it is valid). We de�ne

rank(�) = k for 2k�1 < size(�) � 2k;

rank(h� �i) = k for 2k�1 < size(h� �i) � 2k;

rank(h� �i) = � 1

14.6 Correctness of Rytter's algorithm 359

We can apply the notion of rank also to binary trees. An item [X; i; j] can be

seen as a collection of binary trees with j � i leaves. Hence the rank of a binary

tree is the (rounded) logarithm of the size of its yield. Furthermore, the rank of a

node in a tree is the rank of the sub-tree of which that node is the root.

An important observation is that every binary tree of rank k � 1 has a node

of rank k such that both children of this node have rank < k. We call this the

critical node. In order to �nd the critical node, start searching at the top. If both

children have rank < k, then stop. Otherwise, go to the child with largest rank

(which must be k) and continue searching from there.

We will generalize this idea to items, and show the existence of a critical item.

De�nition 14.19 (critical item)

Let � 2 I(1), rank(�) = k. An item � 2 I(1) is called critical to � if

(i) h� �i 2 V(P(a1 : : :an)),

(ii) rank(�) = k,

(iii) there are �; � 2 V(P(a1 : : :an)) such that

rank(�) � k � 1, rank (�) � k � 1, and �; � `CYK �.

(where �; � `CYK � is a convenient abbreviation for \there are A;X; Y; i; j; k such

that � = [X; i; j], � = [Y; j; k] and � = [A; i; k] and, moreover, A!XY 2 P .") 2

Lemma 14.20

For every item � 2 V(P(a1 : : :an)) with rank (�) � 1 there is an item

� 2 V(P(a1 : : : an)) such that � is critical to �.

Proof.

Let � 2 V(P(a1 : : : an)) and rank(�) = k � 1.

Then there must be a pair of items �; 2 V(P(a1 : : : an)) such that �; `CYK �.

Without loss of generality, we assume rank(�) � rank ().

If rank(�) < rank (�) then � = � and (i){(iii) in De�nition 14.19 are satis�ed.

If rank(�) = rank(�) = k we can recursively search for a � that is critical to

�. There must be a pair �0; 0 2 V(P(a1 : : : an)) such that �0; 0 `CYK � and

rank (�0) � rank(0). In this way we �nd a sequence �; �0; �00; �000, and so on.

Note, however, that rank(�) = rank (�) = rank(�0) = : : : but that size(�) >

size(�) > size(�0) > : : : ; hence the recursion must end at some critical item. It is

easy to verify that if � is critical to : : : ; �00; �0; � then it is also critical to �. 2

Corollary 14.21

Let h� �i 2 V(P(a1 : : :an)), and � critical to �. Then rank(h� �i) < rank(�). 2

360 14. Boolean circuit parsing

If proposed(h� �i) is true at some moment, then this must have been caused

by a propose or by a combine operation. If it was a combine, then there is a �

such that h� �i was obtained as a combination of previously proposed h� �i and

h� �i. Each of these has been proposed either by a propose or by a combine

operation, and so on. Ultimately, every proposed item with a gap can be broken

down into a sequence of items with a gap, all �tting into each other, such that

each item in this sequence has been proposed by a propose operation. This is

formalized as follows.

De�nition 14.22 (item path)

Let h� �i 2 V(P(a1 : : :an)). A sequence of valid items �0; : : : ; �p is called an item

path from � to � if

(i) �0 = � and �p = �,

(ii) for each i with 1 � i � p there is some �i 2 V(P(a1 : : : an)) such that

�i; �i `CYK �i�1,

(iii) for each i and j with 0 � i < j � p it holds that h�i; �ji 2 V(P(a1 : : : an)). 2

Lemma 14.23

for every h� �i 2 V(P(a1 : : :an)) there is an item path from � to �.

Proof: direct from the above discussion. 2

The reason for retrieving an item path is that, in the sequel, we will need to

cut an item h� �i of rank k into pieces of rank < k. To that end, we need one

more auxiliary concept. A critical step on an item path is located such that both

remaining parts, above and below the critical step, are of lower rank.

De�nition 14.24 (critical step on an item path)

Let h� �i 2 V(P(a1 : : : an)) and rank(h� �i) = k > 0. Furthermore, let � =

�0; : : : ; �p = � be an item path from � to �. An item h�i�1; �ii is called a critical

step of �0; : : : ; �p if

(i) rank(h� �i�1i) � k � 1,

(ii) rank(h�i; �i) � k � 1, 2

Lemma 14.25

For every h� �i 2 V(P(a1 : : :an)) there is a critical step on every item path from

� to �.

Proof: trivial 2

Having introduced all the necessary technical machinery, we can now prove the

loop invariants.

14.6 Correctness of Rytter's algorithm 361

Lemma 14.26

Algorithm 14.17 satis�es the following statements for any k

(I)k :
if � 2 V(P(a1 : : :an)) and rank(�) � k

then proposed(�) after k steps;

(II)k :
if h� �i 2 V(P(a1 : : :an)) and rank(h� �i) � k

then proposed(h� �i) after k steps.

These are reformulations of the loop invariants (14.5) and (14.6); an index k hs

been added for easy reference.

Proof. The correctness of (I)0, (II)0, and (I)1 are trivial. We will complete the

proof by showing that the implication

(II)k�1 ^ (I)k =)� (II)k ^ (I)k+1 (14.7)

holds for any k � 1. So we assume (II)k�1 and (I)k.

(II)k :

Let h� �i 2 V(P(a1 : : :an)) and rank (h� �i) = k � 1. We will show that

h� �i must have been proposed after step k.

Let h� i be a critical step on an item path from � to �.

Then there is some 0 2 V(P(a1 : : :an)) such that 0; `CYK � (cf. De�ni-

tion 14.22.(ii)).

Furthermore, rank(h� �i) � k�1, rank(h �i) � k�1 (cf. Lemma 14.25),

and, obviously, rank(0) = rank (h� i) � k. See Figure 14.11.

�

 0

�

�

�
��

A
AA

.
.
.

.
.
.

rank (0) � k

rank (h� �i) � k � 1

rank(h �i) � k � 1

Figure 14.11: a sketch of the proof of (II)k

Consequently, we �nd:

362 14. Boolean circuit parsing

after step k�1: proposed(h� �i) (from (II)k�1),

proposed(h �i) (from (II)k�1);

after step k:1: recognized(0) (from (I)k);

in step k:2: 0 `R h� i;

in step k:3: h� �i; h� i `R h� i;

in step k:4: h� i; h �i `R h� �i;

where `R indicates deduction by Rytter's algorithm.

(I)k+1 :

Let � 2 V(P(a1 : : : an)) and rank(�) = k + 1 � 2. We will show that �

must have been recognized after step k + 1. By Lemma 14.20 there is some

� 2 V(P(a1 : : :an)) critical to �, and there are �; � with rank � k such that

�; � `CYK � (cf. De�nition 14.19).

It must hold that h� �i 2 V(P(a1 : : :an));

note, furthermore, that rank(h� �i) � k.

We distinguish two cases: � 6= � and � = �. First, we assume � 6= �.

Let h� i be a critical step on an item path from � to �, similar to the

above case. The situation is depicted in Figure 14.12.

�

 0

�

�

� �

�
��

A
AA

�
��

A
AA

.
.
.

.
.
.

rank (0) � k

rank (h� �i) � k � 1

rank (h �i) � k � 1

rank (�) � krank (�) � k

Figure 14.12: a sketch of the proof of (I)k+1

Consequently, we �nd:

after step k�1: proposed(h� �i) (from (II)k�1),

proposed(h �i) (from (II)k�1);

after step k:1: recognized(�) (from (I)k),

14.7 A parsing network for Rytter's algorithm 363

recognized(�) (from (I)k),

recognized(0) (from (I)k);

in step k:2: 0 `R h� i;

� `R h� �i;

in step k:3: h� �i; h� i `R h� i;

h �i; h� �i `R h �i;

in step k:4: h� i; h �i `R h� �i;

in step (k+1):1: h� �i; � `R �:

Otherwise, if � = �, it is clear that �; � `R � will be applied in step (k+1):1.

Thus we have �nished the proof of implication (14.7). 2

Theorem 14.27 (correctness Rytter's algorithm)

Algorithm 14.17 is correct.

Proof: soundness is straightforward from the de�nition of the algorithm; com-

pleteness has been proven in Lemma 14.26. 2

14.7 A parsing network for Rytter's algorithm

A parsing network for Rytter's algorithm can be obtained by applying the network

construction of De�nition 14.13 to a parsing system according to Schema 14.15.

A more subtle approach is possible, however, if we realize that it is only items of

the form [X; i; j] that we are interested in. The items with a gap [A; h; k;X; i; j]

have only been introduced as auxiliary constructs, so as to allow recognition in

logarithmic time. If we restrict the notion of parsability to items without a gap,

we can extend the recognition algorithm to a parsing algorithm somewhat more

easily.

As a direct consequence of the de�nition of parsability (cf. De�nition 14.11),

we �nd that an item [X; i; j] is parsable, that is, [X; i; j] 2 W(P(a1 : : :an)), if and

only if

(i) [X; i; j] 2 V(P(a1 : : :an)),

(ii) [S; 0; n;X; i; j] 2 V(P(a1 : : : an)).

The loop invariant (14.6) guarantees that every valid item [S; 0; n;X; i; j] will have

been proposed by the recognition algorithm. So the only thing we have to do for

every recognized item is to check for an appropriate proposed item with a gap.

364 14. Boolean circuit parsing

Algorithm 14.28 (logarithmic-time parser for binary branching grammars)

The recognition algorithm 14.17 is extended to a parsing algorithm by adding

a procedure parse that needs to be called only once, after the repeat loop has

�nished. We add a boolean predicate parse for every � 2 I(1). This will be set to

true if � 2 W(P(a1 : : :an)).

procedure parse

begin

for all � 2 I(1) do parsed(�) := false od;

if recognized([S; 0; n])

then parsed ([S; 0; n]) := true;

for all [X; i; j] 2 I(1)

do if proposed ([S; 0; n;X; i; j]) and recognized([X; i; j])

then parsed([X; i; j]) := true fi

od

fi

end; 2

A parsing network for Rytter's algorithm is de�ned as follows.

De�nition 14.29 (a parsing network for Rytter's algorithm)

Let P= hI;H;Di by a Rytter parsing system as in Schema 14.15, P̀ the system

restricted to some maximum sentence length `. A recognizing network for P̀ is a

boolean circuit that has the following nodes

(a) an or-node ((accept)),

(b) an and-node �accept; i� for 0 � i � `,

(c) an or-node ((�)) for each � 2 I
(1)

`
[H`,

(d) an parse node �P�� for each � 2 I
(1)

`
,

(e) an auxiliary node ((Q�)) for each � 2 I
(1)

`
,

(f) an or-node ((h� �i)) for each h� �i 2 I
(2)

`
;

(g) an and-node �h� �i; �� for each h� �i 2 I
(2)

`
;

(h) an and-node �h� �i; h� �i� for each h� �i; h� �i 2 I
(2)

`
;

and the following connections:

(i) ((�)) �! ((h� �i)) for �; � `CYK �

(or �; � `CYK �),

(ii) ((h� �i)) �!�h� �i; �� for each h� �i 2 I
(2)

`
,

14.7 A parsing network for Rytter's algorithm 365

(iii) ((�)) �!�h� �i; �� for each h� �i 2 I
(2)

`
,

(iv) �h� �i; ���! ((�)) for each h� �i 2 I
(2)

`
,

(v) ((h� �i)) �!�h� �i; h� �i� for each h� �i; h� �i 2 I
(2)

`
,

(vi) ((h� �i)) �!�h� �i; h� �i� for each h� �i; h� �i 2 I
(2)

`
,

(vii) �h� �i; h� �i� �! ((h� �i)) for each h� �i; h� �i 2 I
(2)

`
,

(viii) (([$; i; i+ 1])) �!�accept ; i� for 2 � i � `,

(ix) (([S; 0; i])) �!�accept ; i� for 2 � i � `,

(x) �accept ; i��! ((accept)) for 2 � i � `,

(xi) (([S; 0; k;X; i; j]))�! ((Q [X; i; j])) for [S; 0; k;X; i; j] 2 I
(2)

`
,

(xii) ((Q�)) �!�P�� for each � 2 I
(1)

`
[H`:

(xiii) ((�)) �!�P�� for each � 2 I
(1)

`
[H`. 2

The condition �; � `CYK � in (i) is redundant, because antecedents of deduction

steps are not ordered. Note, furthermore, that (i) denotes unary deduction steps,

hence there is no need for an intermediate and-node. As a consequence, a propose

needs only one clock tick, while all recognize and combine need two clock ticks

each.

Theorem 14.30 (boolean circuit implementation of Rytter's algorithm)

Let P̀ be an uninstantiated Rytter system according to Schema 14.15 for some

grammar G 2 BB. Let a boolean circuit for some maximum string length ` be

given by De�nition 14.29. Then the following statements hold:

� ((accept)) will be activated if and only if a1 : : : an 2 L(G),

� ((�)) will be activated if and only if � 2 V(P(a1 : : :an)),

� ((h� �i)) will be activated if and only if h� �i 2 V(P(a1 : : :an)),

� �P�� will be activated if and only if � 2 W(P(a1 : : :an)),

� The network is in a stable state after 7d 2 logne + 3 clock ticks.

� The network has O(jV j3`6) nodes and edges, with jV j = jN [�j the number

of di�erent grammar symbols.

Proof: Straightforward from Theorem 14.27 and De�nition 14.29. 2

366 14. Boolean circuit parsing

The network that has been de�ned above contains a lot of nodes and edges

that are not useful. Just like in the CYK case, useless parts can be removed by

meta-parsing , where the network is started with all hypotheses in H` validated.

If �P�� remains inactive, then ((�)), ((Q�)), and �P�� can be deleted. Fur-

thermore, if ((h� �i)) remains inactive, then this can be deleted from the network

as well. The and-nodes that implement deduction steps can be trimmed accord-

ingly. Note that we have de�ned parsability only for items �, not for items h� �i.

Hence if, say, � is valid but not parsable, a valid item h� �i may remain while

� is being discarded. If we run the meta-parsing algorithm a second time on the

already optimized network, some more items h� �i and corresponding and-nodes

and edges can be deleted. Two iterations of the meta-parsing algorithm su�ce, a

third iteration will not �lter out any other nodes.

The same result is obtained if the �rst iteration of meta-parsing only considers

items of the form � and the second iteration only considers items of the form

h� �i.

As in Section 14.4 we can employ a weaker meta-parsing algorithm if we would

be interested to collect all valid items for (possibly incorrect) sentences. In that

case, a single iteration of the meta-parsing algorithm su�ces, in which invalidity,

rather than unparsability is used as the criterion to discard nodes.

14.8 Conditional parsing systems

A Rytter system for a binary branching grammar has been obtained from a CYK

system for binary branching grammars by adding conditional items and changing

the deduction steps. This approach can be generalized to other parsing systems as

well. In this way we can obtain logarithmic-time parallel parsing algorithms and

boolean circuit implementations for arbitrary context-free grammars.

We will de�ne conditional parsing systems for arbitrary parsing systems. For

the sake of simplicity, we will �rst do this for binary branching parsing systems,

where every deduction step has exactly two antecedents. Afterwards we generalize

this to deduction steps with any number of antecedents. The generalization is not

di�cult, but involves some more details that distract from the simplicity of the

basic idea.

De�nition 14.31 (potential ancestor)

Let P= hI;H; Di be a parsing system, � 2 I. The potential ancestors of � are

inductively de�ned by

(i) if �1; : : : ; �k ` � 2 D then, for 1 � i � k, �i is a possible ancestor of �.

(ii) if � is a possible ancestor of � and �1; : : : ; �k ` � 2 D then, for 1 � i � k, �i
is a possible ancestor of �. 2

14.8 Conditional parsing systems 367

De�nition 14.32 (conditional binary parsing system)

Let P= hI;H; Di be an (uninstantiated) binary parsing system, (cf. De�nition

14.3).

A conditional binary branching parsing system C = hI [J ;H;Di is de�ned by

J = fh� �i j �; � 2 I ^ � is a possible ancestor of �g;

D
(1) = f� ` h� �i j �; � ` � 2 Dg;

D
(2) = f�; h� �i ` �g;

D
(3) = fh� �i; h� �i ` h� �ig:

D = D(1)
[D

(2)
[D

(3)
2

The reader may verify that if P is a CYK system for a grammar G 2 BB, (cf.

Example 14.4), then C is a Rytter system as de�ned by Schema 14.15.

Next, we will consider the case that deduction steps have at most two an-

tecedents. We may also have unary deduction steps of the form � ` � or even

0-ary deduction steps ` �. For unary deduction steps, we can distinguish between

initial deduction steps, where the antecedent is a hypothesis, and non-initial de-

duction steps where the antecedent is not a hypothesis. The former type is hardly

relevant, because these are only used in the �rst step for further initialization. The

non-initial unary deduction steps need some special treatment if we are to retain

the recursive doubling technique that changes linear-time parallel algorithms into

logarithmic-time parallel algorithms. The general idea is quite simple: if �; � ` �

and � `� �, then we add a deduction step �; � ` �. This technique has been applied

by Graham, Harrison, and Ruzzo, for example, to obtain a more e�cient Earley

parser (cf. Example 6.18). Note that � `� � does not necessarily imply that only

unary deduction steps are applied. A deduction sequence � ` : : : ` � could include

deduction steps of any arity.

De�nition 14.33 (binary closure of deduction steps)

Let P= hI;H; Di be a parsing system, where no deduction steps in D have more

than 2 antecedents. The binary closure D of D is de�ned by

D
(0)

= f ` � j ` � ^ � `�
D
�g;

D
(1)

= f� ` � j � 2 H ^ � `�
D
�g;

D
(2)

= f�; � ` � j �; � `D � ^ � `�
D
�g;

D = D
(0)
[D

(1)
[D

(2)
:

368 14. Boolean circuit parsing

Where `D and `�
D
denote (transitive closure of) deduction steps in D.

Note that all 0-ary and unary deduction steps in the binary closure are initial. 2

De�nition 14.34 (conditional parsing system)

Let P= hI;H; Di be an (uninstantiated) parsing system, with such that no de-

duction step in D has more than 2 antecedents.

A conditional parsing system C = hI [J ;H;Di is de�ned by

J = fh� �i j �; � 2 I ^ � is a possible ancestor of �g;

D
Init = D

(0)
[D

(1)
;

D
(1) = f� ` h� �i j �; � ` � 2 Dg;

D
(2) = f�; h� �i ` �g;

D
(3) = fh� �i; h� �i ` h� �ig;

D = DInit [D(1)
[D

(2)
[D

(3): 2

Example 14.35

The algorithm of Chiang and Fu, laid down in the parsing schemaChF is a further

small optimization of the GHR algorithm without top-down �ltering. Like the

Earley-algorithm, items [A!���; i; j] are recognized if �)�ai+1 : : :aj. By making

use of binary closure techniques, it is guaranteed that all items with position

markers i; j can be computed simultaneously in one step, when all items of the

form [A!���; i; k] and [A!���; k; j] with i < k < j are known. See Example 6.20

on page 123 for the details. Let PChF be a parsing system for any context-free

grammar G 2 CFG. A conditional system C ChF, according to de�nition 14.34,

can be implemented in a boolean circuit in logarithmic time, similar to the Rytter

case. A detailed treatment is given in [Sikkel, 1990a]. 2

Another example of a logarithmic-time algorithm for arbitrary context-free

grammars is the \fast" of the algorithm of de Vreught and Honig [1990, 1991] (cf.

Chapter 6).

We have not yet covered parsing systems with ternary and higher order deduc-

tion steps. For a deduction step

�1; : : : ; �k ` �

we can de�ne conditional items

h� �1; : : : ; �ji for 1 < j < k

and deduction steps

h� �1 : : : ; �ji; �j ` h� �1 : : : ; �j�1i:

14.9 Related approaches 369

These are of little practical use. If a deduction system has deduction steps with 3

or more antecedents, it is more usual to apply a step re�nement (cf. Chapter 5),

to reduce these to binary deduction steps. In Example 5.20 we have de�ned the

generalized CYK algorithm for arbitrary context-free grammars. Because of the

arbitrary number of antecedents (corresponding to the length of the right-hand

side of a production), the complexity of a GCYK parser can be arbitrarily large as

well. The canonical way to tackle this is to re�ne CGYK into a bottom-up Earley

parser, that scans right-hand sides of productions one at the time. The dotted

productions A!��� that are used in Earley items constitute a bilinear cover of

the grammar; cf. Leermakers [1989].

In some cases we have added antecedents to deduction steps to apply dynamic

�ltering ; some antecedents are not used in the construction of the consequent, but

encode conditions on the environment for applying deduction steps. Examples are

the parsing schemata 6.12 and 6.13 for de Vreught and Honig's algorithm and the

context-free head-corner schema 11.10. In all of these cases only two antecedents

are used for \constructing" the consequent, hence the recursive doubling technique

can be used with proper adaptation. Further details are beyond the scope of this

chapter.

14.9 Related approaches

An logarithmic-time algorithm that is almost identical to Rytter's algorithm has

in fact been published earlier by Brent and Goldschlager [1984].

Our version of Rytter's algorithm is slightly di�erent from the original [Rytter,

1985], [Gibbons and Rytter, 1988]. The advantage of our presentation is twofold.

On the one hand we have obtained an easy loop-invariant, that simpli�es the

presentation as well as the correctness proof. On the other hand, a boolean circuit

implementation in O(logn) time with O(n6) processing units can be obtained.

While O(n6) processing units is the minimum that is known for logarithmic-time

parsing algorithms on a WRAM, it is not self-evident that the same complexity

bounds apply to a boolean circuit implementation.6

A logarithmic-time algorithm for arbitrary context-free grammars has been

de�ned by De Vreught and Honig [1990, 1991]. This is a conditional variant of

their algorithm that has been discussed extensively in Chapter 6. A conditional

variant of the algorithm of Chiang and Fu [1984] is worked out in detail in [Sikkel,

1990a].

Boolean circuits can be seen as a speci�c kind of neural networks. A neural

network consists of a large number of simple processing units, that compute the

6There is a general method to convert algorithms on parallel random access machines to
boolean circuits, due to Stockmeyer and Viskhin [1984], but that would yield an implementation

with O(n13) units in this speci�c case.

370 14. Boolean circuit parsing

output as a function of the input. Neurons can be \on" and \o�", as our nodes, but

the function that is used to compute the state of a neuron is di�erent. Typically,

a sigmoid function over the weighted sum of the inputs determines the probability

of activating a neuron.

The main di�erence, however, between our connectionist implementations by

means of boolean circuits and mainstream neural networks research is that of local

vs. distributed representation. Characteristic for neural networks is the holistic

representation of information. Concepts are represented by activation patterns,

rather than individual neurons [Rumelhart and McClelland, 1986], [McClelland

and Rumelhart, 1986]. A typical application of neural networks is pattern recog-

nition. When some input is o�ered to a network, it will stabilize in the state that

represents the best �tting pattern from a set of patterns that the network has

learned to recognize.

In our approach, concepts are mapped to nodes: if an item is valid or parsable,

one speci�c node will be activated to indicate this fact. This localist approach is

also used in other parsing networks that are called \connectionist" or \neural".

Our linear-time parsing network is (a small improvement of) Fanty's network [1985,

1986]; a generalization to Earley's algorithm is given by Nijholt [1990b]. Selman

and Hirst [1987] describe a Boltzmann machine parser; Howells [1988] gives a

relaxation algorithm that uses decay over time; Nakagawa and Mori [1988] present

a parallel left-corner parser incorporated in a learning network. A neural network

with distributed representation is used by Drossaers [1992a] for recognition of

regular languages.

The inherent parallelism in connectionist networks o�ers possibilities to inte-

grate syntactic processing with semantic processing and disambiguation. This has

been studied, among others, by Waltz and Pollack [1988], Cottrell and Small [1984]

and Cottrell [1989].

14.10 Conclusion

Parsing schemata can be encoded straightforwardly into boolean circuits in such

a way that valid items are represented by activated nodes. In this chapter we

have added the notion parsability , that applies to those items that are not only

valid but also have been e�ective in recognizing the sentence. The set of activated

parse nodes in a boolean circuit gives an encoding of the shared parse forest of a

sentence.

These techniques are straightforward adaptations of a network design origi-

nally described by Fanty [1985]. We have shown that this can also be applied to

logarithmic-time algorithms. Along the way, we have simpli�ed both the presen-

tation and the correctness proof of Rytter's algorithm.

In 14.8 we have shown that Rytter's algorithm can be seen as a speci�c instance

of a more general notion of conditional parsing systems that can be applied to other

14.10 Conclusion 371

parsing schemata, so as to obtain logarithmic-time networks that parse arbitrary

context-free grammars.

The results for logarithmic-time boolean circuits have theoretical, rather than

practical value, because the number of processing units that is required is unrealis-

tically high. But it is an indication that boolean circuits provide a useful abstract

machine model for parallel parsing algorithms. This observation is not unimpor-

tant, because any (uninstantiated) parsing system can be trivially implemented as

a boolean circuit.

372 14. Boolean circuit parsing

Part IV

PERSPECTIVE

373

Chapter 15

On language and

natural language processing

Part IV comprises two chapters. The last chapter, as usual, will contain the

conclusions. This second last chapter, therefore, is the place to address some

issues related to, but not covered by the subject studied in this book.

Is it possible to build computer systems that understand natural language?

What useful kinds of products can be constructed by linguistic engineering?

These are the questions that I will address. I will use a few technical terms

(mostly in Section 15.1), but, on the whole, this chapter should be readable for a

broad audience.

Inspiration to write this chapter and some of the ideas presented here stem

from op den Akker [1992], Drossaers [1992b], Nijholt [1992], and van den Berg

[1993, Chapter 2]. The (mis)interpretation of their ideas is my own.

In the analysis of language there is a clear distinction between form and mean-

ing . The same meaning can be expressed in di�erent languages, or in the same

language in di�erent forms. There is no way to demarcate a complete \domain

of meanings" that can be expressed within a language. It is possible to form new

concepts | using language | and use these to introduce new concepts and so on.

A natural language is not �xed but continuously evolving, enriched (or occasion-

ally empoverished, according to some people's taste) by the introduction of new

concepts by scientists, bureaucrats, politicians, artists, etc.

The form of a language, laid down in the grammar, is hardly subject to change.

New concepts are restricted to some open word categories like nouns, verbs, and

adjectives. Such words can be created, obtain new meanings and connotations,

and eventually be forgotten again. But the grammatical rules that govern the use

375

376 15. On language and natural language processing

of such words to construct meaningful expressions are (almost) �xed. The same

applies to closed word categories, like articles, prepositions, and pronominals, of

which there is a �xed, small set.

While it is true that grammars change over time, these changes are slow and

few. If we are to build a computer system that can handle natural language in

some form or other, we may assume that the grammar is �xed. The unbounded

aspects of the language that resist a complete, formal description are restricted to

words in the open word categories. This is a small and acceptable simpli�cation.

In 15.1 I will make a few remarks on grammar, before turning to the meaning

of language in 15.2. Natural language processing is the topic of 15.3; two particu-

lar kinds of applications, machine translation and natural language interfaces are

highlighted in 15.4 and 15.5.

15.1 Grammar

In computational linguistics, the word \grammar" is used with at least three dif-

ferent meanings. We distinguish between

� A formalism in which grammars of any kind can be expressed. Examples

of such grammar formalisms are Context-Free Grammars, De�nite Clause

Grammars, Tree Adjoining Grammars, PATR and other kinds of uni�cation

grammar (cf. Chapters 2 and 7).

A parsing algorithm or schema is designed for some class of grammars de-

noted in a particular formalism. The details of the language that are de-

scribed by a grammar in that formalism are not relevant for the structure of

the parser.

� A particular grammar for some (subset of a) language, i.e., an instance of a

grammar in some kind of grammar formalism.

� A grammatical theory that describes properties that natural languages have

in common. It is supposed that there is some kind of universal grammar

that captures all grammatical phenomena of all natural languages.

A grammatical theory can be formulated by denoting (in some grammatical

formalism) the kind of constructs that can occur in natural languages

In this book we have been concerned with grammar formalisms, and how these

can be parsed. We have not dealt with grammars for individual languages (other

than very small and oversimpli�ed instances of grammars, as examples). Neither

have we been concerned with grammatical theories.

The properties that make a grammar formalismadequate depend very much on

the purpose for which the formalism is to be used. A large expressive power is use-

ful if one is to write down a grammar for a particular language. For a grammatical

15.1 Grammar 377

theory, on the other hand, lack of expressivity is desirable, because the fact that

only a limited number of constructs is needed tells us something about the char-

acteristics of the hypothesized universal grammar. Grammar formalisms that are

to be used in computer systems, moreover, should not have such a complex struc-

ture that parsing is computationally intractable. But this is an implementation

concern, not necessarily related to the structure of language as such.

Somebody who is not very familiar with linguistics might think that it should

be pretty clear by now what a grammar of a natural language looks like. A sur-

vey of the recent computational linguistics literature shows a di�erent picture,

however. During the eighties we have witnessed an explosive growth of the num-

ber of grammar formalisms that is used to encode natural language grammars:

De�nite Clause Grammars, Lexical-Functional Grammar, Functional Uni�cation

Grammar, PATR-II, Generalized Phrase Structure Grammar, Head-Driven Phrase

Structure Grammar, Categorial Grammar, Combinatorial Categorial Grammar,

Categorial Uni�cation Grammar, Uni�cation Categorial Grammar and Lexical-

ized Tree-Adjoining Grammars. This eruption seems to slow down in the nineties,

but new formalisms still emerge. The latest, and not the least interesting one, is

Lexicalized Context-Free Grammar [Schabes and Waters, 1993].

What is the matter here? It is certainly not the case that newly discovered

linguistic phenomena required adaptation of the existing theories. The languages

described by these grammar have not changed over the years, but more and more

formalisms have been invented to describe the same well-known phenomena. One

can think of at least three reasons that may have caused this development:

� Computational linguistics is a relatively young �eld of science, and its foun-

dations haven't quite been settled yet. So we see a series of attempts to

capture the same phenomena in more and more adequate formalisms.

� A more down-to-earth sociological explanation is a lack of discipline in the

�eld. Rather than using an existing formalism, it brings more reward to

invent your own, or at least add some bells and whistles to somebody else's.

� Or do we witness a revolutionary phase in the sense of Kuhn [1970], where

an old paradigm is about to be discarded and di�erent schools struggle for

recognition of competing theories? Major parts of linguistics as we know it

over the last 30 years are based on the work of Noam Chomsky, laid down

in Transformational Grammar (TG) and later in Government and Binding

theory (GB). The contribution of Chomsky to linguistic theory can hardly

be overestimated, but the current standard theory has been revised and

updated numerous times and makes a somewhat patched impression. Hence

it is to be expected that rivalling theories will come up.

While lack of discipline accounts for at least part of this phenomenon, there might

be some truth in the last point as well. Most of the new formalisms have a great

378 15. On language and natural language processing

deal in common and can collectively be described as uni�cation-based grammars.

They are surface-based (i.e., there is no notion of a deep structure that can be

transformed into a surface structure by applying certain operations; a fundamental

concept in Chomskian linguistics) and there is a tendency to put more and more

information into the lexicon and reduce the size of the grammar.

A candidate for a new paradigm, which explicitly advocates itself as such,

is Head-Driven Phrase Structure Grammar (HPSG) of Pollard and Sag [1987,

1993]. HPSG claims to encorporate the good parts of several radically di�erent

previous formalisms, including GB. It is not unlikely that HPSG will develop into

a grammatical theory that is adopted by the majority of computational linguists.

An asset of HPSG is that it uses a single, mathematically well-understood

formalism for semantics and syntax. This is important from an engineering point

of view. The boundary between syntax and semantics is not clear a priori and

features maymove back and forth during the development of a grammar (like in the

development of a computer system, where some functions could be implemented

either in hardware or in software). I have reservations, however, about the elegance

of the formalism that is claimed by the authors. A lexicon entry for a single word

as \catches" (cf. Figure 7.1 on page 144) no longer �ts on an A4 sized sheet of

paper. But this is probably inevitable for a linguistic theory-of-everything which

HPSG pretends to be.

The second, 1993 version of HPSG shows a nice variant of the technological

imperative: \if a construct exists within the framework then sooner or later some-

body will �nd a useful application for it". In the 1987 version only well-founded

feature types were used (i.e., a feature does not contain itself as a sub-feature)

but this is not imposed by the formalism. In the second version, non-wellfounded

features have been used to describe the structure of noun phrases, cf. Section 8.10.

15.2 The meaning of language

There is a vast body of literature on the meaning of language. A thorough philo-

sophical debate on this issue is outside the scope of this book, but a few fundamen-

tal issues must be kept in mind for a discussion of the merits of natural language

understanding by machines.

There is a di�erence between meaning and a formal model of meaning. Natural

language is not formal. One can play around with language, make jokes, invent

new words, and use it in all kinds of creative ways that are not covered in any

formal model. Every formal model is a simpli�cation. This is not necessarily bad.

Only by making generalizations and simpli�cations we are able to get a structured

understanding of the world. When one is going to build a particular machine or

computer program, based on some model, the question arises whether the model

is adequate for that application. If the model is an oversimpli�cation for the

envisaged purpose, the machine or the program will be defective.

15.2 The meaning of language 379

Classical Newtonian mechanics is a model of the physical world. Relativity

theory, a more re�ned (but not \ultimately true") model, shows us that classical

mechanics is inaccurate. But for most day-to-day applications the inaccuracy of

the Newtonian model is neglectably small and it can safely be used to engineer

cars and trains. For the construction of linear accelerators for nuclear particles,

however, Newtonian mechanics is inadequate. Another example of an incorrect,

but adequate model occurs in control theory. A range of industrial applications of

process control is built upon the notion of a linear dynamic system, although every

handbook on control theory tells you that no real system is truly linear. The art

of engineering, then, is make sure that the behaviour of the system will be limited

to those ranges where it can be said to be linear with reasonable accuracy and to

apply appropriate safety margins.

In the same line we can see grammar, as discussed above, as a model of the

structure of language. It is theoretically impossible to write a grammar with an

exact, 100 % coverage, simply because there is no clear boundary between gram-

matical and ungrammatical sentences. There are some borderline cases that some

consider correct and others consider incorrect. Also, we have noticed that gram-

mars do change over time. Yet it is hardly disputed that one can write grammars

with an adequate coverage for natural language processing applications1. But the

meaning of language, however, is very much more di�cult to model.

Meaning, in a broad sense, relates a piece of language to the world, or to our

interpretation of the world. Theories of meaning come in two broad categories, that

can be called objectivist and subjectivist . In an objectivist approach it is assumed

that there is an objective reality independent of the human observer. This need

not be limited to the physical world, humans beings and their thoughts are part of

the real world. But the important presumption is that there is a single real world.

The meaning of language is objective, as is relates language to that world. An

interpretation of the meaning of a sentence is given by its truth conditions: which

premises must be ful�lled in (a model of) the real world in order for the sentence

to be true?

There is strong evidence, however, that di�erent people have a di�erent under-

standing of the world and that reality is, at least partly, created by the mind. In

a subjectivist model, therefore, meaning of language is necessarily related to the

observer. A subjectivist approach does not deny the existence of some objective

(and intersubjective) truths, but gives a more extensive and more accurate model

of the meaning of language.

An objective theory of meaning covers a smaller part of meaningful natural

language, but can easier be captured in a computational model and a working

1A real problem, however, is the fact that sentences do not need to be grammatically correct

in order to be understood and many spoken sentences are indeed incorrect. But the issue of

how to handle extragrammatical sentences is di�erent from the question of what constitutes an

adequate grammar.

380 15. On language and natural language processing

system. Whether this is an adequate representation will depend on the application

one has in mind.

Formal semantics, as it is understood in mainstream computational linguistics,

is meaning in an objectivist sense, based on the work of Montague [1974], [Partee

et al., 1990]. The semantics of a sentence is a logical formula that relates the

objects in the sentence and their relations to some postulated universe of objects.

The semantics of a discourse can be obtained by resolving the references to entities

that are mentioned in di�erent sentences [Kamp, 1981]. What a piece of language

means to somebody and in some circumstances is outside the scope of formal

semantics.

From this point of view, then, one can de�ne pragmatics as \everything outside

semantics". By calling this aspect of language \pragmatics" it is part of somebody

else's �eld; the semantician need no longer bother and can direct all his attention to

the logical contents of sentences. This is not a reproach. The limitation to formal

semantics in the objectivist sense accounts for the strength of the Montagovian

approach. Because only one aspect of meaning is captured, this particular aspect

can be analysed in great depth.

It must be clear, however, that \semantics" as it is understood in mainstream

linguistics does not constitute the meaning of language. A �rst | and insurmount-

able | problem is ambiguity. With combined syntactic and semantic analysis,

language is inherently very ambiguous. Human beings, fortunately, know how to

disambiguate. Armed with world knowledge and common sense we are able to

retrieve the intended meaning from the large multitude of di�erent meanings that

a piece of language can have.

This account of ambiguity is perhaps the most convenient one from a computa-

tional perspective, but from a more philosophical point of view there is something

deeply wrong here. Most natural language is not ambiguous at all : most of the

things you hear and see every day have only a single meaning, unless you seek to

willingly misunderstand it. Hence I would rather say that the large ambiguity lies

in our limited formal model rather than in the language itself.

Adding world knowledge and common sense have proven to be major stumbling

blocks to the �eld of arti�cial intelligence. One can make computers do any kind

of complicated reasoning that can be described by a formal logic, but one cannot

teach them common sense. Hence, for a computational study of language, it makes

sense to leave out these aspects and restrict our e�orts to a limited model of lan-

guage that is as sophisticated as can reasonably be formalized and implemented

in machines. But we must not confuse meaning with our (necessarily limited) for-

mal model of meaning. And for envisaged applications of language engineering we

must address the question whether our formal understanding of natural language

is adequate for the particular purpose.

Pragmatics, like semantics, studies the meaning of language, but from a di�er-

ent | subjectivist | perspective. The study of pragmatics is based on semiotics,

15.3 Natural language processing 381

the foundations of which are laid down in the pragmaticism of the American

philosopher Peirce [1933]. (Semiotics is the study of signs, not necessarily re-

stricted to linguistic signs, but for the current discussion we focus on language).

The fundamental idea is that meaning arises as an interpretation of a language

utterance by a hearer (or reader) in some pragmatic context. As an example,

consider the sentence \It is warm here". Depending upon the situation, it could

be interpreted as: a factual statement about the temperature; the opening of a

conversation; a request to open a window; an excuse for not making much progress

on some task; etc.

The semiotic view provides a much better understanding of the meaning of lan-

guage than the semantics-based view. The problem for computational linguistics,

however, is that this understanding, although more satisfying, is not necessarily

computational. In the Montagovian approach it is fairly well-understood how we

can formalize semantics and then construct a system to compute it. A �eld of com-

putational pragmatics, that studies how to formalize and implement pragmatics,

seems to be emerging right now. But there are clear limitations to the imple-

mentation of formalized pragmatics, one cannot store all pragmatic contexts in a

system.

Successful natural language understanding systems have been built in the past,

in fact, by narrowing the application to a single, simple context. A particularly

successful example is Shrdlu [Winograd, 1972], which operates in a \block world"

where blocks, pyramids, and similar objects can be manipulated and reasoned

about. It is clear that such a microworld can be described adequately within an

objectivist paradigm.

Interest in semiotics and in the philosophy of Peirce is growing within the

computational linguistics community. It provides us with a deeper and better un-

derstanding of the meaning of language than conventional semantics. But it is

not obvious that this will lead to more powerful natural language understanding

systems, however, because there is no guarantee that computational pragmatics is

feasible beyond the same kind of microworlds that we already can handle reason-

ably well within the objectivist paradigm.

15.3 Natural language processing

Natural language processing is the handling of natural languages by computers.

Computers are formal systems, and natural language, by its very nature, resists

complete formalization. It is wise, then, to try to build natural language process-

ing systems? As we have argued above, that will depend on whether our limited

understanding of language is adequate for the application. Two applications for

natural language processing that have attracted a lot of attention (and research

funds) are machine translation and natural language interfaces for computer sys-

tems. These will be discussed in some more detail in 15.4 and 15.5. There are

382 15. On language and natural language processing

other applications, however, where the bene�ts of natural language applications

are beyond doubt, even though a computer system will have only a partial under-

standing of the language.

A good example is spelling correction in word processors. Misspelled words

might look like proper words, and many grammatical errors can't be detected

without a grammatical analysis of a sentence. Hence, a spelling corrector that

makes a grammatical analysis of the sentence will �nd much more errors than the

spelling correctors that are contained in today's word processors. An example of

such an advanced spelling corrector is Corrie, under development at the university

of Leiden [Vosse, 1992]. It should be clear, though, that no spelling corrector

will guarantee that it �nds all errors. If a typo yields a di�erent, but plausible

reading, it will not be recognized as an error. There is an anecdote about an

American general who was called \the battle-scarred", which got mistyped in a

newspaper article as \the battle-scared". The other day a recti�cation appeared

in which it was explained that our hero surely wasn't scared of battle but should

be known as \the bottle-scarred". There is no way in which any spelling correction

program, however advanced, could have avoided these mishaps. The important

thing to notice here is that, because no spelling corrector is completely reliable,

an incomplete understanding of the language does not essentially diminish the

reliability of the product.

A di�erent example where a 100 % success rate can never be reached but limited

understanding can improve the performance is information retrieval. The task is

to retrieve all texts on a certain subject from a large database of texts. The use

of natural language processing techniques, rather than the conventional keyword

look-up, can substantially increase the recall and precision (i.e., accuracy) of such

a system [Strzalkowski and Vauthey, 1992].

15.4 Machine translation

The �rst attempts at machine translation were made in the �fties and sixties.

A motivation for this research was the fact that such a large number of Russian

conversations was taped by American intelligence services, that it wasn't possible

to translate them all. The general mistake (as we see it now) was that one did

not realize that translation is impossible without an understanding of the text. A

translation is text in a di�erent form but with the same meaning. If the translation

system has no idea about the meaning of a text, it is bound to get lost in the

multitude of ambiguities in syntax and lexicon. Hence little progress was made

and one started to realize that the task was very much more di�cult than had been

envisaged. The ALPAC report [1966], exposing machine translation as a hoax,

marked the beginning of the �rst ice age in computational linguistics. Research

funds for machine translation were suspended at many places an the subject was

out of fashion for more than a decade.

15.4 Machine translation 383

A revival of machine translation occurred in the eighties. Unlike those early

systems, modern machine translation is based on a structured understanding of

syntax and semantics (cf. Rosetta [forthcoming]). There has been a lot of progress

in the area of formal semantics. But, as we have argued above, formal semantics

cover but part of the meaning of language.

Ambiguity remains to be a major obstacle to machine translation. This is

a fundamental problem, not something that can be solved by extensions to the

current machine translation technology. A program will come up with a lot of

possibilities that one would not never think of, because their interpretations are

absurd. As an example, consider the sentence time ies like an arrow. It has

only a single plausible interpretation, but a number of di�erent syntactic parses

and corresponding semantic analyses. One could read ies as a noun, yielding a

compound noun time ies (similar to time traveller or fruit ies) as the subject of

the verb like. Alternatively, one can read time as a verb in imperative form. If one

can time running athletes or computer processes, there is no a priori reason why

ies like an arrow can't be timed (or ies can't be timed like an arrow). So how

should a system know that the (only) interpretation is the one with ies as the

main verb?

If the domain of knowledge in which translations are to be made is su�ciently

small, one can add the \world knowledge" to the system that is necessary to discard

syntactically feasible but pragmatically absurd readings. One of the success stories

in machine translation is a Canadian system that translates weather forecasts

from English into French. This is a domain with a rather specialized and limited

terminology | and a need for rapid translation. A general purpose translation

system, however, cannot contain all of the knowledge that is needed to �nd the

single correct interpretation. Therefore a system either has to make educated

guesses (but, for general purpose texts, it will inevitably be educated rather poorly)

or it will overgenerate, i.e., o�er di�erent alternative translations.

Reliable stand-alone translation machines can only be built for small, well-

organized domains of knowledge. But there is a clear demand for more e�cient

(i.e. cheaper) translation, particularly in the European Communities. The EC

produces vast amounts of paper that have to be translated in all (currently 10)

di�erent languages of the community and savings could be substantial if at least

part of the translations could be done by machines. What to do, then? As machine

translation of raw text is essentially unreliable, one could have a human being help

the machine. The simplest possibility is post-editing , i.e., somebody corrects the

translation errors. Another option is interactive translation (i.e. the machine asks

a person to help disambiguate the sentence), which has the advantage that the

human editor does not need to know the target language. Similarly, the number of

ambiguities could be reduced (but not reliably eliminated) by suitable pre-editing .

Several combinations of these techniques can be thought of as well.

Ken Church, in his invited talk to the EACL conference in Utrecht, April 1993,

384 15. On language and natural language processing

mentioned an experiment where translators were asked to come and evaluate a

translation system. One of the questions asked afterwards is whether they would

like to have the system if it were given to them for free. Not a single translator

would like to have the system for free, and the audience of computational linguists

in Utrecht did not seem to be surprised by this result. Such is the state of the

art, and it doesn't have to come as a surprise that the available research funds for

machine translation are declining again.

The solutions to the translation problem, as usually proposed by the machine

translation community, focus on human-aided machine translation. A more hum-

ble, but probably more fruitful goal is that of machine-aided human translation.

This is a rather di�erent perspective on the translation problem, because it focuses

on the translator who makes a translation and my call upon a workstation for help

of various kinds. The relevant question, from an industrial point of view, is how

language engineering can help a translator to do her job more e�ciently and more

conveniently. What kind of linguistic capabilities are useful in a translator's work-

bench? It is this much more humble attitude, as Church remarked, with which

the machine translation community can survive the dawning second ice age of the

�eld and come to bloom again when products are delivered that translators �nd

convenient to use.

I do not mean to say that research into machine translation is worthless because

it doesn't deliver industrial products. There are two issues here that should not be

confused. On the one hand, computational linguistics is interesting as a science;

machine implementations of linguistic theories can be used to test such theories and

contribute to a better understanding of the structure of language. Such a better

understanding might, eventually, lead to insights that will contribute, perhaps

in unexpected ways, to the design of useful industrial products. But the prime

purpose here is to acquire a better scienti�c understanding.

On the other hand, there is an industrial need for more e�cient translation.

The name \machine translation" is misleading: it suggests to give at least a partial

contribution to this second concern, which is somewhat deceptive, to say the least.

Like it has been the case with arti�cial intelligence, this leads all too easy to

expectations that cannot be ful�lled.

The German science foundation has recently started a research program called

\Verbmobil" that will be a major source of funding of computational linguistics

research over the next decade. The aim is to develop a prototype translation sys-

tem that can be used by speakers engaged in a conversation in a foreign language.

If somebody gets stuck and doesn't know a word or a phrase, she can push a

button and speak in her own language into the microphone. The system then will

produce a spoken translation. I have not yet met a single computational linguist

who thinks that the aims set by the Verbmobil project are realistic. Optimists

emphasize, however, that it is a real challenge where various fundamental issues

have to be addressed and the state of the art will be pushed forward, even though

15.5 Natural language interfaces 385

no practically useful system can be delivered. Pessimists fear that the unrealistic

ambitions will convince the funding agencies that computational linguistics pro-

duces more hype than results, and funding for the entire �eld will be severely cut

when the project, at the end of the day, inevitably will fail to achieve its goal

| as so many other projects in this �eld. The Verbmobil project, because of its

clear and appealing goal, is very likely to create this confusion between scienti�c

interest and expected applicable results.

15.5 Natural language interfaces

The purpose of a natural language interface is radically di�erent from the pur-

pose of a translation system. Therefore the issues, problems and perspectives are

di�erent as well.

A natural language interface is an interface to a computer system. It should be

able to engage in a conversation with people who want the computer system to do

something: give some information, make a reservation, sell a ticket, or whatever

the system can be used for. In several respects this task is more complicated

than translation. The system must be able to �gure out the pragmatics as well

as the semantics of the language that is uttered by the customer. It must have

some understanding of the possible intentions of the user. Moreover, the system

must have a fairly good knowledge of the structure of dialogues. These are rather

di�erent from the sequence of sentences that constitute the discourse in a normal,

written text. A very important advantage, on the other hand, is the fact that

there is a natural restriction on the context in which the dialogue is to take place.

I have argued above that the current state of the art is insu�cient to acquire an

adequate pragmatic understanding of language. That is, language as communica-

tion between human beings, spoken (in a conversation) or written (from author to

reader). In case of a natural language interface, the situation is somewhat di�er-

ent: the communication is between a person and a machine. Somebody wants the

machine to do something and therefore engages in a discussion. The advantage is

twofold. Firstly, speaking with a machine, one is likely to use somewhat di�erent

language than speaking with another person. Secondly, and more importantly, the

restriction to a particular domain of knowledge is rather natural (for a translation

machine this is rather unnatural). Moreover, this is the very domain that the

system should have knowledge about.

In a situation where the system's perception of what it can do and what cus-

tomers might want it to do is compatible with the customer's perception, there

are chances of getting the pragmatics of the situation right. If, on the other hand,

the system and the customer do not basically understand each other, a total com-

munication breakdown will occur.

Dialogue grammars are much less developed than text grammars, and dia-

logues, in general, are more complicated than discourses. For use in a natural

386 15. On language and natural language processing

language interface one might restrict this to dialogues in the situation where some-

body seeks information (or some other service) from a machine that is known to

have a certain functionality. This does not mean that it is simply the customer

who asks questions and the system that gives answers; the system could ask for

clari�cation or for more details; both parties can use speci�c cues to structure the

dialogue and con�rm that they understand each other.

It is too early to predict which kinds of natural language interfaces will be

feasible. Formalization of dialogue structures and related pragmatics is being

worked on by many research groups, and it is hard to predict the adequacy as

well as the computational feasibility of the models that will arise. There is a risk

that proper dialogue handling, even in very restricted contexts, will turn out to be

much more complicated than expected. As we do not yet have a well-established

formal theory, it could be possible that there are some fundamental obstacles that

we are not even aware of, like with the early machine translation projects. But

the perspectives look better, here, because there is at least some hope that the

pragmatics of the situation can be grasped.

A problem of scalability inevitably will remain. For very small systems with

only a few functions one needs only limited natural language understanding which

can be done easily with techniques available today. For larger and larger applica-

tion domains, it will be more and more di�cult to capture both the subject that

is being talked about and the variety in sensible dialogues.

Where the fundamental problems occur, and whether adequate natural lan-

guage interfaces for practical system can be developed, is an open question that

merits further investigation.

15.6 Conclusion

Our formal understanding of natural language is incomplete in various respects.

Natural language processing can be applied successfully to areas where our limited

formal understanding is adequate.

Machine translation (other than for very restricted domains) is fundamentally

impossible without human help. More practical results (but less scienti�c reward)

can be expected from machine-aided human translation than from human-aided

machine translation.

Natural language interfaces face several additional di�culties, but have the

advantage that there is at least a chance of coping with the pragmatics of the

situation. At this moment it is not clear how much the state of the art can be

pushed forward and whether practical natural language interfaces are feasible.

Chapter 16

Conclusions

Some of the material that has been presented is new, some other material has
been included so as to make the book coherent and self-contained. Our speci�c
research contributions are summarized in Section 16.2. But �rst we make some
general remarks in 16.1, drawing together the results from the di�erent topics that
were discussed. Some ideas for future research are presented in 16.3.

16.1 Some general remarks

Many di�erent parsing algorithms can be found in the computer science and com-
putational linguistics literature. Algorithms di�er a lot with respect to languages
in which they are expressed, data structures used, degree of formality, class of
grammars that can be handled, etc. Things get more complicated | and more
varied | when we consider parallel, rather than sequential algorithms.

A useful, if not necessary, starting point for comparing the relative merits
of di�erent parsing algorithms is a description of those algorithms in a common
formalism. In this book we propose parsing schemata as a framework for descrip-
tion and comparison of parsing algorithms. We have given numerous examples of
parsing algorithms, both sequential and parallel, that can be described relatively
straightforwardly within the parsing schemata framework. Moreover, we have also
given some examples of cross-fertilization where properties of di�erent algorithms
can be mixed, once the correspondence in underlying structure has been uncovered.

A second advantage of the use of parsing schemata is that it allows to divide the
parsing problem into two smaller, less complicated problems. Parsing schemata
constitute a well-de�ned level of abstraction between grammars and algorithms.
An implicit speci�cation of the correct syntactic analyses of a sentence is given by
the grammar; a parsing algorithm gives and explicit recipe for computing these.

387

388 16. Conclusions

Parsing schemata de�ne the steps that have to be taken, but without specifying
data structures, control structures and communication structures. E�cient parsers
may involve a lot of such details. By using a parsing schema as a high-level
speci�cation one can separate the issues that relate to the structure of syntactic
analysis from the issues that relate to the structure of e�cient programs.

The absence of algorithmic detail is both an asset and a liability. There is a gain
in conceptual clarity. The essential properties of an algorithm are captured more
easily, simply because a lot of detail is absent. The other side of the coin, however,
is that is it not a priori clear whether a schema can be implemented e�ciently. We
have used parsing schemata most successfully for the description, reconstruction,
optimization and cross-fertilization of existing algorithms, that were known to be
e�cient. The parsing schemata framework o�ers only limited insights into the
e�ciency of possible implementations.

We have worked out a single concept, on a theoretical level in part II and

in a series of applications in part III. It is this combination that, in our view,
constitutes the main value of this book.

Theory makes abstractions, and application requires detail. At some places,
most prominently in Chapter 4, we have noted that these two interests can be
at odds with each other. If our only concern would have been to come up with
an elegant framework of how parsing works in theory , we could interpret an item
set as quotient over a congruence relation on a set of trees, and not worry about
the practical details. If, on the other hand, our only purpose would have been
to provide a practical notation for conceptually clear descriptions of parsing algo-
rithms, the underlying mathematics could simply be deleted. But without such
a theoretical understanding, it could have been just a coincidence that sensible
parsing schemata can be drawn up for all the algorithms that we have studied.
Armed with a theoretical foundation, we can claim that the framework applies to

constructive parsing in general.
The theoretical foundation and practical applications reinforce each other, so

that the value of the parsing schemata framework is more than the sum of both
parts.

16.2 Research contributions of this book

A formalization of the notion of parsing schemata has been given in Chapters
3 and 4. Various kinds of relations between parsing schemata were de�ned in
Chapters 5 and 6. Re�nement and generalization, in Chapter 5, are used to obtain
qualitative improvements in schemata. By making smaller steps and producing
more intermediate results, the complexity of some schemata can be reduced and/or
the applicable class of grammars enlarged. Filtering, as discussed in Chapter 6, is
used for quantitative improvements: irrelevant parts of a deduction system can be
discarded. A hierarchy of �lters could be expressed concisely and elegantly at the

16.3 Ideas for future research 389

abstract level of parsing schemata. As an extensive example, we have presented
various variants of Earley's algorithm, de Vreught and Honig's algorithm and the
(generalized) LC algorithm within a single taxonomy.

In Chapter 8 we have extended parsing schemata to uni�cation grammars by
adding feature structures to a context-free backbone. As a result, we have ob-
tained a formalism in which feature percolation in parsing algorithms for uni�ca-
tion grammars can be de�ned explicitly in a simple way.

The most interesting conclusion from chapter 9, based upon some recent stud-
ies in the computational linguistics literature, is that context-free parsing tech-
niques remain to be important for the construction of e�cient uni�cation grammar
parsers. The e�ciency of a parser can be enhanced by extracting a context-free
backbone from a uni�cation grammar that includes more than just a category

feature.

The major contribution of chapters 10 and 11 is the speci�cation and cor-
rectness proof of predictive Head-Corner parsing schemata, both for context-free
grammars and uni�cation grammars. These results do not provide the ultimate
truth about Head-Corner parsers; several less or more complicated optimizations
can be added that we have only hinted at. Our prime objective here, however, was
to show that parsing schemata are an e�ective tool to get a formal grip on highly
complicated algorithms.

In Chapter 12 we presented Tomita's Generalized LR parser, with the purpose
of showing that the notion of a parsing schema can also be applied to parsers with
an algorithmic structure that is rather di�erent from the various types of chart
parsers discussed so far. Having formally uncovered the close relation between
the algorithms of Earley and Tomita, we could cross-fertilize the bottom-up par-
allelization of Earley with the graph-structured stack of Tomita. The resulting
parallel bottom-up Tomita parser, that was presented in Chapter 13, is a success-
ful example of combining properties of di�erent algorithms with related underlying
parsing schemata.

In Chapter 14 we have shown that boolean circuits provide a suitable abstract
machine model for (massively) parallel implementations of parsing schemata. As
an exemplary non-trivial case, Rytter's logarithmic-time parsing algorithm has
been treated in detail.

16.3 Ideas for future research

The central notion of parsing schemata has been discussed in su�cient detail, but
several fringe issues have been left unsettled. Some of these could become central
issues of substantial further research.

390 16. Conclusions

� E�cient parsing of uni�cation grammars is an issue that attracts a lot of
attention. Uni�cation is an expensive operation, that accounts for most
of the total processing time of a uni�cation grammar parser. Hence any
increase in the e�ciency of uni�cation speeds up the parser with almost the
same factor. Much e�ort has been spent on speeding up uni�cation, and
reasonably e�cient uni�cation algorithms are available now.
Another way to increase the e�ciency of uni�cation grammar parsing is
limiting the number of uni�cations that have to be carried out. To this end,
one can apply the �ltering techniques known from context-free parsing.
There are indications that considerable savings can be obtained by extending
the context-free backbone of a uni�cation grammar with some key features.
The optimal boundary between phrasal and functional constraints, as they
are called by Maxwell and Kaplan [forthcoming], is a subject that merits a
more structured investigation.

� Head-Corner parsing has been described on a rather theoretic level. It should
be possible to improve the e�ciency of the parser by appropriate �ltering
techniques. The question whether head-corner parsing makes sense as a prac-
tical parsing technique is still open for debate. An experiment by Bouma
and van Noord [1993] shows that Head-Corner parsing works well for some
grammars and not at all for other grammars.
It would be worthwhile to carry out some more experiments with realis-
tic grammars, in which the Head-Corner parser is compared with (among
others) a Left-Corner parser and the parser of Satta and Stock.

� This study did not shed much light on the feasibility of parallel parsing.
The results of the PBT study in Chapter 13 are somewhat inconclusive,
The simulation experiment was moderately encouraging, but indeed only a
simulation. At least we have refuted the pessimism that was caused by the
devastating results of Thompson's [1989] experiments.
The question whether parallel parsing is practically feasible, therefore, is still
open for debate.

� Boolean circuits have been introduced as an abstract parallel machine model,
rather than a serious proposal for parallel implementation. Chapter 14
presents an idea and an example, rather than a systematic investigation.
On a theoretic level, the boolean circuit model could serve as a basis for a
more thorough treatment of the complexity of parsing schemata.

Samenvatting

Ontleden, in wetenschappelijk jargon ook wel parsing genoemd, is een onderwerp
dat zowel in de informatica als in de computerlingu��stiek aan bod komt. Com-

puterprogramma's worden geschreven in programmeertalen. Zo'n programma kan
niet direct op de computer worden uitgevoerd, maar moet eerst vertaald worden
naar machinetaal. Een eerste stap hiertoe is het ontleden van de structuur van
een programma in zo'n taal. Bij het ontleden van natuurlijke talen zoals Neder-
lands of Engels wordt gebruik gemaakt van een formele (door de computer te
begrijpen) grammatica die de structuur van zo'n natuurlijke taal meer of minder
volledig beschrijft. Zulke grammatica's kunnen worden ontwikkeld om tot een zo
precies mogelijke karakterisering te komen van de structuur van een taal of voor
een bepaalde toepassing, zoals een vertaalcomputer, een geavanceerde spellingscor-
rector of een programmawaarin men in natuurlijke taal met een computersysteem
kan communiceren.

Een ontleedalgoritme is een nauwkeurig voorschrift voor het programmeren van
een computer, zodat deze kan ontleden. Zo'n algoritme is niet speci�ek voor �e�en
grammatica, maar beschrijft ontleding voor een klasse van grammatica's. Met
behulp van het algoritme kan een computer voor een willekeurige grammatica zelf
een computerprogramma construeren dat dan weer voor een willekeurige zin een
ontleding volgens die grammatica produceert.

Hoewel de grammaticaformalismen die gebruikt worden voor het beschrijven
van programmeertalen en natuurlijke talen uiteenlopen, is er toch een zekere
overlap in ontleedmethoden. Dit boek handelt voor het grootste gedeelte over
het ontleden van contextvrije grammatica's. Met name voor het beschrijven van
natuurlijke talen worden formalismen gebruikt die aanmerkelijk krachtiger (en in-
gewikkelder) zijn dan contextvrije grammatica's; maar veelal zijn deze te splitsen
in een contextvrije \ruggegraat" van de grammatica en een ander gedeelte dat
verdere taalkundige informatie over de woorden uit de zin verwerkt. Het ontle-
den valt dan in twee componenten uiteen: de mogelijke zinsstructuren worden
beschreven door een contextvrije grammatica, de overige kenmerken, waaronder
context-afhankelijke beperkingen op zinsstructuren, worden ondergebracht in ken-
merkstructuren, beter bekend onder de Engelse naam feature structures. De ope-

391

392 Samenvatting

ratie waarmee eigenschappen uit feature structures van verschillende zinsdelen
met elkaar kunnen worden gekoppeld heet uni�catie. Deze grammatica's worden
daarom uni�catiegrammatica's genoemd.

Door deze scheiding aan te brengen tussen zinsstructuur enerzijds en overige
taalkundige informatie anderzijds kunnen algoritmen voor contextvrije ontleding
en algoritmen voor uni�catie van features apart behandeld worden | al zullen
componenten voor beide soorten bewerkingen natuurlijk samen moeten werken in
een ontleder voor natuurlijke taal.

De afgelopen dertig jaar is een groot aantal verschillende ontleedalgoritmen
bedacht en in de vakliteratuur gepubliceerd. Door de introductie van parallelle
computers | waarin een taak word uitgevoerd door meerdere, onderling samen-
werkende rekeneenheden tegelijk | is het aantal bruikbare ontleedalgoritmen ver-
veelvoudigd, omdat de meeste bestaande algoritmen op verschillende manieren
geparallelliseerd kunnen worden. Om op een structurele manier de overeenkom-

sten en verschillen tussen al deze algoritmen aan te kunnen geven moet eerst een
formalisme gevonden worden waarin deze verschillende (al dan niet parallelle) al-
goritmen op een uniforme manier kunnen worden beschreven.

In dit boek worden ontleedschema's (parsing schemata) gepresenteerd als uni-
verseel raamwerk voor het beschrijven van de karakteristieke eigenschappen van
ontleedalgoritmen. Ontleedschema's zijn abstracties van ontleedalgoritmen. Zo'n
schema beschrijft niet de door de computer te gebruiken gegevensstructuren, con-
trolestructuren en (bij parallelle verwerking) communicatiestructuren, maar con-
centreert zich op de essentie van het ontleedproces: op welke manier kunnen nieuwe
zinsdelen herkend worden aan de hand van een reeds bekende verzameling zinsde-
len.

In deel I, Uiteenzetting , wordt de probleemstelling toegelicht en een informele
schets van ontleedschema's gegeven.

In deel II, Grondslag , wordt een wiskundige theorie van ontleedschema's ont-
vouwd.

In deel III, Toepassing , worden ontleedschema's gebruikt om een aantal beken-
de en nieuwe algoritmen te bestuderen en te vergelijken. Ook wordt aangegeven
hoe feature structures in een schema ge��ntegreerd kunnen worden.

Deel IV, Perspectief , bevat twee afsluitende hoofdstukken. Hoofdstuk 15 stijgt
uit boven de enge grenzen van het hier behandelde onderwerp en gaat in op de
perspectieven van natuurlijke-taalverwerking door computers. In hoofdstuk 16
worden de conclusies kort samengevat. De belangrijkste opmerking die de con-
clusies van de afzonderlijke hoofdstukken overstijgt is dat het theoretische en het
toegepaste deel van dit boek elkaar versterken. Theorie maakt abstracties en
toepassing vereist detail. Het hier ontvouwde raamwerk is abstract genoeg om
zorgvuldig theoretisch onderbouwd te worden en praktisch genoeg om de veel-
heid aan in de literatuur voorgestelde en veelal ingewikkelde ontleedalgoritmen
inzichtelijk en samenhangend te kunnen herschrijven.

Epilogue

The Maya have fascinated many people. Living in the stone age, in the midst of
tropical rain forest, these people achieved the highest indigenous culture in the

Americas, the only one with a complete script. The classic Maya period, in which
most of the art and all the inscriptions are dated, lasted from 100 to 900 A.D.
As enigmatic as the rise of this culture is its sudden downfall, in the 9th century.
Almost within a single life span, the Maya ceased to make inscriptions all over the
country, stretching From Tabasco in the West to Belize and Honduras in the East.

For a long time, only fragments of Maya the script | the calendar system and
records of astronomic events | could be read, which added much to the mystery.
Only in the last decades the script has been deciphered, and considerable parts of
their history can be reconstructed. With the facts on the table, now, they appear
to be a somewhat more mundane lot then generations of Maya experts would have
liked them to be.

The sculptures and monuments do not depict scenes with gods, but describe
the deeds of kings and other ahau, members of the ruling class. Some kings fancied
themselves depicted as gods, from which the ahau claimed to descend. Public art
primarily served purposes of personality cult and political propaganda.

Like ancient Greece, the country was divided into independent city states.
Although there was a common culture, there has never been a political unity.
These city states were constantly at war with each other. The purpose of war was
not so much to occupy neighbouring cities (only after centuries it has occurred
to them that you could actually impose your rule on other cities by implanting a
vassal as king) but to take captives. These were sacri�ced to the gods. The higher
the captive, the higher the esteem of its captor.

Writing was a form of art, and with such a rather complex script, it is supposed
that only the ahau were literate. When Maya society collapsed, the knowledge of
the script was lost.

How the script functions, and how that knowledge has been regained in our
time, is a fascinating story that can not be summarized satisfactorily in a few
lines. The interested reader is referred to Coe [1992]. A comprehensive history of

393

394 Epilogue

the Maya as far as it can be reconstructed from the inscriptions is given by Schele
and Freidel [1990].

A note on the illustrations

The front cover displays the top of a sculptured stone, six feet square and four feet
high, that is technically known as \Altar Q". The four sides of this monument are
shown on pages 1, 41, 133, and 373. This monument was commissioned by Yax-
Pac, the sixteenth king of Cop�an, to celebrate his accession to the throne on July
2nd, 763. The four sides display the sixteen kings, in clockwise order, each one
seated on a glyph representing his own name. Yax-Pac is seated in right middle
position in the illustration on page 1. He faces Yax-Kuk-Mo', the �rst king. The
3rd{6th, 7th{10th, and 11th{14th kings are displayed from right to left on pages
41, 133, and 373, respectively.

The inscription on the top starts to commemorate that Yax-Kuk-Mo' displayed
his divine scepter at September 6, 426 A.D. (or, rather, 5 Caban 15 Yaxkin in the
Maya calendar) and became king three days later.

As much of the Maya art, this monument had a clear political purpose. Yax-
Pac had good reasons to stress his direct descendence from the legendary founder;
there are indications that the nobility of Cop�an questioned the sovereignty of the
king.

But problems far greater than political rivalry overshadowed the city. Cop�an
had become overpopulated. With the most fertile part of the valley covered by an
expanding city, agriculture had been pushed onto the hill sides. Erosion, aggra-
vated by deforestation, depleted the usable soil at an ever faster rate. Malnutrition
and anaemia plagued the ahau as well as the common man, while the community

was driven inexorably towards an ecological breakdown.
Yax-Pac reigned for no less than 56 years, but the dynasty barely survived

him. In the days of his successor, U-Cit-Tok, seventeenth king in the line of Yax-
Kuk-Mo', the ravaged land regressed into prehistory | or, rather, posthistory.
The last erected monument commemorates the accession of U-Cit-Tok. It has not
been �nished. The recorded history of Cop�an ends on the day that the artists laid
down their tools and left the job.

Bibliography

A.V. Aho, J.E. Hopcroft and J.D. Ullman (1974). The Design and Analy-
sis of Computer Algorithms, Addison-Wesley, Reading, Mass.

A.V. Aho, R. Sethi and J.D. Ullman (1986). Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, Reading, Mass.

A.V. Aho and J.D. Ullman (1972). The Theory of Parsing, Translation and
Compiling Vol. I: Parsing . Prentice-Hall, Englewood Cli�s, N.J.

A.V. Aho and J.D. Ullman (1977). Principles of Compiler Design. Addison-
Wesley, Reading, Mass.

H. A��t-Kaci (1984). A Lattice Theoretic Approach to Computation Based on a
Calculus of Partially Ordered Type Structures. Ph.D. Thesis, University of
Pennsylvania, Philadelphia.

H. A��t-Kaci (1986). An Algebraic Semantics Approach to the E�ective Resolu-
tion of Type Equations. Theoretical Computer Science 45, pp. 293{351.

R. op den Akker (1988). Parsing Attribute Grammars. Ph.D. Thesis, Depart-
ment of Computer Science, University of Twente, Enschede, the Netherlands.

R. op den Akker (1992). Over Informatica, Computers en Taal | prolego-
mena voor een antropologische technologie. Department of Computer Sci-
ence, University of Twente, Enschede, the Netherlands.

R. op den Akker, H. Alblas, A. Nijholt, P. Oude Luttighuis and K.
Sikkel (1992). An Annotated Bibliography on Parallel Parsing; updated
version. Memoranda Informatica 92-84, Department of Computer Science,
University of Twente, Enschede, the Netherlands.

R. op den Akker, B. Melichar and J. Tarhio (1990). The Hierarchy of LR-
Attributed Grammars. International Conference on Attribute Grammars
and their Applications, Paris. Lecture Notes on Computer Science 416,
Springer-Verlag, Berlin.

395

396 Bibliography

ALPAC (1966). Language and Machines: Computers in Translation and Linguis-
tics. A Report by the Automatic Language Processing Advisory Committee,
Division of Behavioural Sciences, National Academy of Sciences, National
Research Council, Washington D.C.

D.E. Appelt (1987). Bidirectional Grammars and the Design of Natural Lan-
guage Generation Systems. 3rd Workshop on Theoretical Issues in Natural
Language Processing , New Mexico State University, pp. 206{212.

L. Baxter (1973). An E�cient Uni�cation Algorithm. Technical Report CS-73-
23, University of Waterloo, Ontario, Canada.

H. van den Berg (1993). Knowledge Graphs and Logic, One of Two Kinds.
Ph.D. Thesis, Department of Applied Mathematics, University of Twente,

Enschede, the Netherlands.

G. Berry and G. Boudol (1990). The Chemical Abstract Machine. 17th ACM
Symposium on Principles of Programming Languages, San Francisco, pp.
81{94.

S. Billot and B. Lang (1989). The Structure of Shared Forests in Ambiguous
Parsing. 27th Annual Meeting of the Association for Computational Lin-
guistics, (ACL'89) Vancouver, pp. 143{151.

L. Bloomfield (1927). On Recent Work in General Linguistics. Modern Philol-
ogy 25, pp. 211{230.

L. Bloomfield (1933). Language. Holt, Rinehart and Winston, New York.

G. Bouma (1991). Prediction in Chart Parsing Algorithms for Categorial Uni�-
cation Grammar. 5th European Chapter of the Association of Computational
Linguistics, (EACL'91), Berlin, pp. 179{184.

G. Bouma, and G. van Noord (1993). Head-driven Parsing for Lexicalist
Grammars: Experimental Results. 6th Meeting of the European Chapter
of the Association of Computational Linguistics (EACL'93), Utrecht, pp.
71{80.

R.P. Brent and L.M. Goldschlager (1984). A Parallel Algorithm for Con-
text-Free Parsing. Australian Computer Science Communications 6 (7), pp.
7.1 {7.10.

R.S. Boyer and J.S. Moore (1972). The Sharing of Structure in Theorem-
Proving Programs. Machine Intelligence 7, pp. 101{116.

D. Carter (1990). E�cient Disjunctive Uni�cation for Bottom-Up Pars-
ing. International Conference on Computational Linguistics (COLING'90),
Helsinki, Vol. 3, pp. 70{75.

Bibliography 397

D. de Champeaux (1986). About the Paterson-Wegman Linear Uni�cation Al-
gorithm. Journal of Computer and System Science 32, pp. 79{90.

K.M. Chandy and J. Misra (1988). Parallel Program Design: A Foundation.
Addison Wesley, Reading, Mass.

Y.T. Chiang and K.S. Fu (1984). Parallel Parsing Algorithms and VLSI im-
plementations for Syntactic Pattern Recognition. Transactions on Pattern
Analysis and Machine Intelligence, PAMI-6 (1984) pp. 302{314.

N. Chomsky (1957). Syntactic Structures. Mouton & Co., The Hague, the
Netherlands.

N. Chomsky (1965). Aspects of Theory of Syntax . MIT Press, Cambridge,Mass.

N. Chomsky (1981). Lectures on Government and Binding . Foris Publications,
Dordrecht, the Netherlands.

W.F. Clocksin and C.S. Mellish (1981). Programming in Prolog . Springer-
Verlag, New York.

M.D. Coe (1992). Breaking the Maya Code. Thames and Hudson, London.

J. Cohen (1990). Constraint Logic Programming Languages. Communications
of the ACM 33 (7), pp. 52{68.

J. Corbin and M. Bidoit (1983). A Rehabilitation of Robinson's Uni�cation
Algorithm. Information Processing 83, pp. 73{79.

G.W. Cottrell (1989). A connectionist approach to word sense disambigua-
tion. Morgan Kaufmann Publishers, Los Altos, Ca.

G.W. Cottrell and S.L. Small (1984). Viewing Parsing as Word Sense Dis-
crimination: A Connectionist Approach. In: B.G. Bara and G. Guida
(Eds.), Computational Models of Natural Language Processing , Elsevier Sci-
ence Publishers, pp. 91{119.

A.J. Demers (1977). Generalized Left Corner Parsing. 4th ACM Symposium on
Principles of Programming Languages, pp. 170{182.

F.L. DeRemer (1969). Practical Translators for LR(k) Languages. Ph.D. The-
sis, MIT, Cambridge, Mass.,

F.L. DeRemer (1971). Simple LR(k) grammars. Communications of the ACM
14, pp. 94{102.

J. D�orre and A. Eisele (1990). Feature Logic with Disjunctive Uni�cation.
International Conference on Computational Linguistics (COLING'90),
Helsinki, Vol. 2, pp. 100{105.

398 Bibliography

M.F.J. Drossaers (1992a). Hop�eld Models as Nondeterministic Finite-State
Machines. 14th International Conference on Computational Linguistics
(COLING'92), Nantes, France, pp. 113{119.

M. Drossaers (1992b). Kritiek op de lingu��stiek. In: M. Drossaers, J. Schaake
and K. Sikkel, The Colchester Papers, unpublished manuscript, Department
of Computer Science, University of Twente, Enschede, the Netherlands.

P.J. Downey, R. Sethi and R.E. Tarjan (1980). Variations on the Common
Subexpression Problem. Journal of the ACM 27, pp. 758{771.

J. Earley (1986). An E�cient Context-Free Parsing Algorithm. Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pa.

J. Earley (1970). An E�cient Context-Free Parsing Algorithm. Communica-
tions of the ACM 13, pp. 94{102.

A. Eisele and J. D�orre (1988). Uni�cation of Disjunctive Feature Descrip-
tions. 26th Annual Meeting of the Association of Computational Linguistics
(ACL'88), Bu�alo, N.Y., pp. 286{294.

M.C. Emele (1991). Uni�cation with Lazy Non-Redundant Copying. 29th An-
nual Meeting of the Association of Computational Linguistics (ACL'91),
Berkeley, Ca., pp. 323{330.

M.C. Emele (forthcoming). Graph Uni�cation using Lazy Non-Redundant
Copying. Technical Report, Institut f�ur Maschinelle Sprachverarbeitung,
Universit�at Stuttgart.

M.A. Fanty (1985). Learning in Structured Connectionist Networks. Report
TR 252, Computer Science Department, University of Rochester, Rochester,
NY.

M.A. Fanty (1986). Context-free Parsing in Connectionist Networks. In: J.S.
Denker (Ed.), Neural Networks for Computing , Snowbird, Utah, AIP con-
ference proceedings 151, American Institute of Physis, pp. 140{145.

C.N. Fischer (1975). Parsing Context-free Languages in Parallel Environments.
Report 75-237, Department of Computer Science, Cornell University, Ithaca,
N.Y.

Z. Galil andG.F. Italiano (1991). Data Structure and Algorithms for Disjoint
Set Union Problems. ACM Computing Surveys 23, pp. 319{344.

J.H. Gallier (1986). Logic for Computer Science, foundations of Automatic
Theorem Proving . Harper & Row, New York.

Bibliography 399

G. Gazdar, E. Klein, G.K. Pullum and I.A. Sag (1985).
Generalized Phrase Structure Grammar . Harvard University Press, Cam-
bridge, Mass.

D.D. Gerdemann (1989). Using Restriction to Optimize Uni�cation. 1st Inter-
national Workshop on Parsing Technologies (IWPT'89), Pittsburgh, Pa.,
8{17.

D.D. Gerdemann (1991). Parsing and Generation of Uni�cation Grammars.
Ph.D. Thesis, Report CS-91-06, Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign.

A. Gibbons and W. Rytter (1988). E�cient Parallel Algorithms. Cambridge
University Press, Cambridge, UK.

S. Ginsburg and H. Rice (1962). Two families of languages related to AL-
GOL. Journal of the ACM 9, pp. 350{371.

K. Godden (1990). Lazy Uni�cation. 28th Annual Meeting of the Association
for Computational Linguistics (ACL'90), Pittsburgh, Pa., pp. 180{187.

G. Gr�atzer (1979). Universal Algebra, 2nd Edition. Springer-Verlag, New
York.

S.L. Graham, M.A. Harrison and W.L. Ruzzo (1980). An Improved Con-
text-Free Recognizer. ACM Transactions on Programming Languages and
Systems 2, pp. 415{462.

B.J. Grosz, K. Sparck Jones, B.L. Webber (Eds.) (1982). Readings in
Natural Language Processing , Morgan Kaufmann, Los Altos, Ca.

D. Grune and C.J.H. Jacobs (1990). Parsing Techniques: A Practical Guide.
Ellis Horwood, New York.

A. Haas (1989). A Parsing Algorithm for Uni�cation Grammar. Computational
Linguistics 15, pp. 219{232.

H. Harkema and M. Tomita (1991). A Parsing Algorithm for Non-Determin-
istic Context-Sensitive Languages. In: R. Heemels, A. Nijholt, and K. Sikkel
(Eds.), Tomita's algorithm | Extensions and Applications, 1st Twente
Workshop on Language Technology , University of Twente, Enschede, the
Netherlands, pp. 21{31.

M.A. Harrison (1978). Introduction to Formal Language Theory . Addison-
Wesley, Reading, Mass.

S.P. Harrison and T.M. Ellison (1992). Restriction and Termination in
Parsing with Feature-Theoretic Grammars. Computational Linguistics 18,
pp. 519{530.

400 Bibliography

R. Heemels, A. Nijholt, and K. Sikkel (Eds.) (1991). Tomita's algorithm
| Extensions and Applications. Proceedings 1st Twente Workshop on Lan-
guage Technology , University of Twente, Enschede, the Netherlands.

S.J. Hegner (1991). Horn Extended Feature Structures: Fast Uni�cation with
Negation and Limited Disjunction. 5th European Chapter of the Association
for Computational Linguistics (EACL'91), Berlin, pp. 33{38.

G. Helbig and J. Buscha (1972). Deutsche Grammatik | Ein Handbuch f�ur
den Ausl�anderunterricht . Verlag Enzyklop�adie, Leipzig.

G.F. van der Hoeven (1993). An Algorithm for the Construction of De-
pendency Trees. 3rd International Workshop on Parsing Technologies
(IWPT'93), Tilburg and Durbuy, Netherlands/Belgium, pp. 89{100.

T. Howells (1988). VITAL: a Connectionist Parser. 10th Conference of the
Cognitive Science Society , pp. 18{25.

G. Huet (1976). R�esolution d'equations dans les langages d'ordre 1; 2; : : : ; !.
Th�ese de Doctorat d'Etat. Universit�e de Paris VII.

W. von Humboldt (1836). �Uber die Verschiedenheit des menschlichen Sprach-
baues. In: �Uber die Kawisprache auf der Insel Java, 1. Teil, Abhandlungen
der Akademie der Wissenschaften zu Berlin.

M.A.C. Huybregts (1984). The Weak Inadequacy of context-free Phrase Struc-
ture Grammars. In: G. de Haan, M. Trommelen, and W. Zonneveld (Eds.),
Van Periferie naar Kern, Foris Publications, Dordrecht, the Netherlands.

J. Jaffar and J.-L. Lassez (1987). Constraint Logic Programming. 11th ACM
Symposium on Principles of Programming Languages, M�unchen, pp. 500{
506.

W. Janssen, M. Poel, K. Sikkel, and J. Zwiers (1991). The Primordial
Soup Algorithm | A Systematic Approach to the Speci�cation and Design
of Parallel Parsers. In: J. van Leeuwen (Ed.), Computing Science in the
Netherlands, (CSN'91), Stichting Informatica Onderzoek in Nederland, pp.
298{314.

W. Janssen, M. Poel, K. Sikkel and J. Zwiers (1992). The Primordial
Soup Algorithm. 14th International Conference on Computational Linguis-
tics (COLING'92), Nantes, France, pp. 373{379.

M. Johnson (1989). The Computational Complexity of Tomita's Algorithm. In-
ternational Workshop on Parsing Technologies (IWPT'89), Carnegie Mellon
University, Pittsburgh, Pa., pp. 203{208.

Bibliography 401

M. Johnson (1991). Features and Formulae. Computational Linguistics 17, pp.
131{151.

S.C. Johnson (1975). Yet Another Compiler-Compiler. Computer Science Tech-
nical Report 32, Bell Laboratories, Murray Hill, NJ.

M.D. Jones and M. Madsen (1980). Attribute-inuenced LR parsing. In:
M.D. Jones (Ed.), Aarhus Workshop on Semantics-Directed Compiler Gen-
eration, Springer-Verlag, Berlin, pp. 393{407.

A.K. Joshi, L.S. Levy and M. Takahashi (1975). Tree Adjunct Grammars.
Journal of Computer and System Sciences 10 (1).

A. Joshi, K. Vijay-Shanker and D. Weir (1991). The Convergence of Mildly
Context-Sensitive Grammar Formalisms. In: P. Sells et al. (Eds.), Founda-
tional Issues in Natural Language Processing , MIT Press, Cambridge, Mass.,
pp. 31{81.

H. Kamp (1981). A Theory of Truth and Semantic Representation. In: J.A.G.
Groenendijk, T.M.V. Janssen, and M.B.J. Stokhof (Eds.), Formal Methods
in the study of language, Mathematical Centre Tracts 136, Mathematical
Centre, Amsterdam, pp. 277-322.

R.M. Kaplan and J. Bresnan (1982). Lexical-Functional Grammar: a formal
system for grammatical representation. In: J. Bresnan (Ed.), The Mental
Representation of Grammatical Relations, MIT Press, Cambridge, Mass.,
pp. 173{281.

L. Karttunen and M. Kay (1985). Structure Sharing with Binary Trees. 23rd
Annual Meeting of the Association for Computational Linguistics (ACL'85),
Chicago, pp. 133{136A.

L. Karttunen (1986). D-PATR: A Development Environment for Uni�cation-
Based Grammars. Technical Report CSLI-86-61, Center for the Study of
Language and Information, Stanford University, Stanford, Ca.

T. Kasami (1965). An E�cient Recognition and Syntax Analysis Algorithm for
Context-Free Languages. Scienti�c Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, Mass.

R.T. Kasper (1987a). Feature Structures: A Logical Theory with Applications
to Language Analysis. Ph.D. Thesis, University of Michigan.

R.T. Kasper (1987b). A Uni�cation Method for Disjunctive Feature Descrip-
tions. 25th Annual Meeting of the Association of Computational Linguistics
(ACL'87), Stanford, Ca., pp. 235{242.

402 Bibliography

R.T. Kasper and W.C. Rounds (1986). A Logical Semantics for Feature
Structures. 24th Annual Meeting of the Association of Computational Lin-
guistics (ACL'86), New York, pp. 257{266.

M. Kay (1979). Functional Uni�cation Grammar. 5th Annual Meeting of the
Berkeley Linguistics Society , Berkeley, Ca.

M. Kay (1980). Algorithm Schemata and Data Structures in Syntactic Process-
ing. Report CSL-80-12, Xerox PARC, Palo Alto, Ca. (reprinted in: [Grosz
et al., 1982]).

M. Kay (1985). Parsing in Functional Uni�cation Grammar. In: D.R. Dowty,
L. Karttunen, and A. Zwicky (Eds.), Natural Language Parsing , Cambridge
University Press, Cambridge, UK, pp. 251{278.

M. Kay (1989). Head Driven Parsing. 1st International Workshop on Parsing
Technologies (IWPT'89), Pittsburgh, Pa., pp. 52{62.

G. Kempen and T. Vosse (1990). Incremental Syntactic Tree Formation in Hu-
man Sentence Processing: an Interactive Architecture based on Activation
Decay and Simulated Annealing. Connection Science 1, pp. 273{290.

J.R. Kipps (1989). Analysis of Tomita's Algorithm for General Context-Free
Parsing. International Workshop on Parsing Technologies (IWPT'89),
Carnegie Mellon University, Pittsburgh, Pa., pp. 182{192.

K. Knight (1989). Uni�cation: A Multidisciplinary Survey. Computing Surveys
21, pp. 93{124.

D. Knuth (1965). On the Translation of Languages from Left to Right. Infor-
mation and Control 8, pp. 607{639.

D.E. Knuth (1968). Semantics of Context-Free Languages. Mathematical Sys-
tems Theory 2, pp. 127{145.

D.E. Knuth (1978). Semantics of Context-Free Languages, Correction. Mathe-
matical Systems Theory 5, pp. 95{96.

K. Kogure (1990). Strategic Lazy Incremental Copy Graph Uni�cation. Inter-
national Conference on Computational Linguistics (COLING'90), Helsinki,
Vol. 2, pp. 223{228.

S.R. Kosaraju (1969). Computations on Iterative Automata. Ph.D. Thesis,
University of Pennsylvania, Philadelphia.

S.R. Kosaraju (1975). Speed of Recognition of Context-Free Languages by Ar-
ray Automata. SIAM Journal on Computing 4, pp. 331{340.

Bibliography 403

C.H.A. Koster (1971). A�x Grammars. In: J.E.L. Peck (Ed.), Algol 68 Imple-
mentation, North Holland Publishing Company, Amsterdam.

C.H.A. Koster (1991a). A�x Grammars for Programming Languages. In: H.
Alblas, B. Melichar (Eds.), Attributed Grammars, Applications and Systems,
Lecture Notes in Computer Science 545, Springer-Verlag, Berlin, pp. 358{
373.

C.H.A. Koster (1991b). A�x Grammars for Natural Languages. In: H. Alblas,
B. Melichar (Eds.), Attributed Grammars, Applications and Systems, Lec-
ture Notes in Computer Science 545, Springer-Verlag, Berlin, pp. 469{484.

T. Kuhn (1970). The Structure of Scienti�c Revolutions. University of Chicago
Press, Chicago.

W.R. LaLonde, E.S. Lee and J.J. Horning (1972). An LALR(k) parser gen-

erator. IFIP Congress '71 , pp. 153{157.

B. Lang (1974). Deterministic Techniques for E�cient Non-Deterministic Pars-
ers. 2nd Colloquium on Automata, Languages and Programming , Lecture
Notes in Computer Science 14, Springer-Verlag, Berlin, pp. 255{269.

B. Lang (1989). A Uniform Formal Framework for Parsing. International Work-
shop on Parsing Technologies (IWPT'89), Pittsburgh, Pa., pp. 28{42.

M.M. Lankhorst (1991). PBT: A Parallel Bottom-up Variant of Tomita's Pars-
ing Algorithm. M.Sc. Thesis, Department of Computer Science, University
of Twente, Enschede, the Netherlands.

M.M. Lankhorst and K. Sikkel (1991). PBT: A Parallel Bottom-up Tomita

Parser. Memoranda Informatica 91-69, Department of Computer Science,
University of Twente, Enschede, the Netherlands.

R. Leermakers (1989). How to Cover a Grammar. 27th Annual Meeting of the
Association for Computational Linguistics (ACL'89), Vancouver, pp. 135{
142.

R. Leermakers (1991). Non-deterministic Recursive Ascent Parsing. 5th Meet-
ing of the European Chapter of the Association for Computational Linguistics
(EACL'91), Berlin, pp. 87{91.

A. Manaster-Ramer (1987). Dutch as a Formal Language. Linguistics and
Philosophy 10, pp. 221{246.

A. Martelli and U. Montanari (1977). Theorem Proving with Structure
Sharing and E�cient Uni�cation. International Joint Conference on Ar-
ti�cial Intelligence (IJCAI'77), p. 543.

404 Bibliography

A. Martelli and U. Montanari (1982). An E�cient Uni�cation Algorithm.
ACM Transactions on Programming Langanguages and Systems (TOPLAS)
4, pp. 258{282.

Y. Matsumoto, H. Tanaka, H. Hirakawa, H. Miyoshi and H. Yasukawa
(1983). BUP: a bottom-up parser embedded in Prolog. New Generation
Computing 1, pp. 145{158.

J.T. Maxwell III and R.M. Kaplan (1989). An Overview of Disjunctive
Constraint Satisfaction. 1st International Workshop on Parsing Technolo-
gies (IWPT'89), Pittsburgh, Pa., pp. 18{27.

J.T. Maxwell III and R.M. Kaplan (forthcoming). The Interface between
Phrasal and Functional Constraints. Computational Linguistics, to appear.

J.L. McClelland and D.E. Rumelhart (1986). Parallel Distributed Process-

ing: Explorations in the Microstructure of Cognition. Vol. 2. MIT Press,
Cambridge, Mass.

E. Mendelsohn (1964). Introduction to Mathematical Logic. Van Nostrand,
New York.

R. Montague (1974). Formal Philosophy: Selected Papers of Richard Montague.
R.H. Thomason (Ed.), Yale University Press.

M. Nagata (1992). An Empirical Study on Rule Granularity and Uni�cation In-
terleaving Toward an E�cient Uni�cation-Based Parsing System. 14th Inter-
national Conference on Computational Linguistics (COLING'92), Nantes,
France, pp. 177{183.

H. Nakagawa and T. Mori (1988). A Parser Based on Connectionist Model.
12th International Conference on Computational Linguistics (COLING'88),
Budapest, pp. 454{458.

M. Nakano (1991). Constraint Projection: An E�cient Treatment of Disjunc-
tive Feature Descriptions. 29th Annual Meeting of the Association of Com-
putational Linguistics, (ACL'91), Berkeley, Ca., pp. 307{314.

I. Nakata and M. Sassa (1986). L-attributed LL(1) grammars are LR(1)-
attributed. Information Processing Letters 23, pp. 325{328.

T. Nakazawa (1991). An Extended LR Parsing Algorithm fo Grammars Using
Feature-Based Syntactic Categories. 5th European Chapter of the Associa-
tion for Computational Linguistics (EACL'91), Berlin, pp. 69{74.

P. Naur (Ed.) (1960). Report on the algorithmic language ALGOL 60. Com-
munications of the ACM 3, pp. 299{314.

Bibliography 405

M.-J. Nederhof (1993). Generalized Left-Corner Parsing. 6th Meeting of
the European Chapter of the Association of Computational Linguistics,
(EACL'93), Utrecht, pp. 305{314.

M.J. Nederhof and J.J. Sarbo (1993). Increasing the Applicability of LR
Parsing. 3rd International Workshop on Parsing Technologies (IWPT'93),
Tilburg and Durbuy, Netherlands/Belgium, pp. 187{201.

G. Nelson and D.C. Oppen (1977). Fast Decision Algorithms Based on Con-
gruence Closure. 18th Annual Symposium on the Foundations of Computer
Science, Providence, Rhode Island.

G. Nelson and D.C. Oppen (1980). Fast Decision Procedures Based on Con-
gruence Closure. Journal of the ACM 27, pp. 356{364.

A. Nijholt (1983). Deterministic Top-Down and Bottom-Up Parsing: Historical
Notes and Bibliographies. Mathematcal Centre, Amsterdam.

A. Nijholt (1988). Computers and Languages | Theory and Practice. Studies
in Computer Science and Arti�cial Intelligence 4, North-Holland Publishing
Company, Amsterdam.

A. Nijholt (1990a). The CYK Approach to Serial and Parallel Parsing. Seoul
International Conference on Natural Language Processing , Language Re-
search Institute, Seoul National University, South Korea, pp. 144{155.

A. Nijholt (1990b). Meta-Parsing in Neural networks. In: R. Trappl (Ed.),
10th European Meeting on Cybernetics and System Research, Vienna, pp.
969{976.

A. Nijholt (1992). Linguistic Engineering: A Survey. 2nd Twente Workshop
on Language Technologies (TWLT2), University of Twente, Enschede, The
Netherlands, pp. 1{22.

G. van Noord (1991). Head Corner Parsing for Discontinuous Constituency.
29th Annual Meeting of the Association of Computational Linguistics (ACL
'91), Berkeley, Ca., pp. 114{121.

G.J.M. van Noord (1993). Reversibility in Natural Language Processing.
Ph.D. Thesis, University of Utrecht, the Netherlands.

R. Nozohoor-Farshi (1989). Handling of Ill-designed Grammars in Tomita's
Parsing Algorithm. International Workshop on Parsing Technologies (IWPT
'89), Carnegie Mellon University, Pittsburgh, Pa., pp. 182{192.

H. Numazaki and H. Tanaka (1990). A New Parallel Algorithm for General-
ized LR Parsing, 13th International Conference on Computational Linguis-
tics (COLING'90), Helsinki, Vol. 2, pp. 304{310.

406 Bibliography

P. Oude Luttighuis (1991). Optimal Parallel Parsing of Almost All LL(k)
grammars. Memoranda Informatica 91-37, Department of Computer Sci-
ence, University of Twente, Enschede, the Netherlands.

P. Oude Luttighuis and K. Sikkel (1992). Attribute Evaluation during Gen-
eralized Parsing. Memoranda Informatica 92-85, Computer Science Depart-
ment, University of Twente, Enschede, the Netherlands.

P. Oude Luttighuis and K. Sikkel (1993). 3rd International Workshop on
Parsing Technologies (IWPT'93), Tilburg and Durbuy, Netherlands/
Belgium, pp. 219{233.

B.H. Partee, A. ter Meulen and R.E. Wall (1990). Mathematical Methods
in Linguistics. Studies in Linguistics and Philosophy 30, Kluwer Academic

Publishers, Dordrecht.

M.S. Paterson and M.N. Wegman (1978). Linear Uni�cation. Journal of
Computer and System Science 16, pp. 158{167.

C.S. Peirce (1933-1958). Collected Papers of Ch.S. Peirce. C. Hartshorne, P.
Weiss and A. Burks (Eds.), Harvard University Press, Cambridge, Mass.

F.C.N. Pereira (1983). Parsing as Deduction. 21st Annual Meeting of the As-
sociation of Computational Linguistics (ACL'83), Cambridge, Mass., pp.
137{144.

F.C.N. Pereira (1985). A Structure-Sharing Representation for Uni�cation-
Based Grammar Formalisms 23rd Annual Meeting of the Association of
Computational Linguistics (ACL'85), Chicago, pp. 137{144.

F.C.N. Pereira and D.H.D. Warren (1980). De�nite Clause Grammars for
Language Analysis | A Survey of the Formalism and a Comparison with
Augmented transition Networks. Arti�cial Intelligence 13, pp. 231{278.

W. Pohlmann (1983). LR parsing of a�x grammars. Acta Informatica 20, pp.
283{300.

C. Pollard (1984). Generalized Phrase Structure Grammars, Head Grammars
and Natural Languages. Ph.D. Thesis, Department of Linguistics, Stanford
University.

C. Pollard and I.A. Sag (1987). An Information-Based Syntax and Seman-
tics, Vol. 1: Fundamentals. CSLI Lecture Notes 13, Center for the Study of
Language and Information, Stanford University, Stanford, Ca.

C. Pollard and I.A. Sag (1993). Head-Driven Phrase Structure Grammar ,
University of Chicago Press.

Bibliography 407

V.R. Pratt (1975). LINGOL | A Progress Report. 4th International Joint
Conference on Arti�cial Intelligence (IJCAI'75), pp. 422{428.

D. Proudian and C. Pollard (1985). Parsing head-driven phrase structure
grammar. 23th Annual Meeting of the Association of Computational Lin-
guistics (ACL'85), Chicago, pp. 167{171.

G.K. Pullum and G. Gazdar (1982). Natural Languages and Context-Free
Languages. Linguistics and Philosophy 4, pp. 471{504.

J. Rekers (1992). Parser Generation for Interactive Environments. Ph.D. The-
sis, University of Amsterdam.

P. Resnik (1992). Left-Corner Parsing and Psychological Plausibility. Inter-
national Conference on Computational Linguistics (COLING'92), Nantes,
France, pp. 191{197.

J.A. Robinson (1965). A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM 12, pp. 23{41.

D.J. Rosenkrantz and P.M. Lewis (1970). Deterministic Left Corner Pars-
ing. 11th Annual Symposium on Switching and Automata Theory , pp. 139{
152.

M.T. Rosetta (forthcoming). Compositional Translation. Kluwer, Dordrecht.

W.C. Rounds and R.T. Kasper (1986). A Complete Logical Calculus for
Record Structures Representing Linguistic Information. 1st IEEE Sympo-
sium on Logic in Computer Science, Boston, Mass., pp. 38{43.

D.E. Rumelhart and J.L. McClelland (1986). Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Vol. 1. MIT Press,
Cambridge, Mass.

W. Rytter (1985). On the recognition of context-free languages. 5th Sympo-
sium on Fundamentals of Computation Theory , Lecture notes in Computer
Science 208, Springer-Verlag, pp. 315{322.

N. Sager (1981). Natural Language Information Processing . Addison-Wesley,
Reading, Mass.

M. Sassa, H. Ishizuka, and I. Nakata (1987). ECLR-attributed grammars: a
practical class of LR-attributed grammars. Information Processing Letters
24, pp. 31{41.

G. Satta and O. Stock (1989). Head-Driven Bidirectional Parsing: A Tabu-
lar Method. International Workshop on Parsing Technologies (IWPT'89),
Pittsburgh, Pa., pp. 43{51.

408 Bibliography

G. Satta and O. Stock (1992). BiDirectional Context-Free Grammar Parsing
for Natural Language Processing. Technical Report 9204-11, Istituto per la
Ricerca Scienti�ca e Tecnologica, Trento, Italy.

Y. Schabes and A.K. Joshi (1991). Tree-Adjoining Grammars and Lexicalized
Grammars. In: M. Nivat (Ed.), De�nability and Recognizability of Sets of
Trees, Elsevier, Amsterdam.

Y. Schabes and R.C. Waters (1993). Lexicalized Context-Free Grammars.
21st Annual Meeting of the Association of Computational Linguistics
(ACL'93), Columbus, Ohio, pp. 121{129.

L. Schele and D. Freidel (1990). A Forest of Kings: the Untold Story of the
Ancient Maya. WilliamMorrow, New York.

J.J. Schoorl and S. Belder (1990). Computational Linguistics at Delft: A
Status Report. Report WTM/TT 90-09, Applied Linguistics Unit, Delft
University of Technology,

K. Schubert (1987). Metataxis | Contrastive Dependency Syntax for Machine
Translation. Foris Publications, Dordrecht, the Netherlands.

B. Selman and G. Hirst (1987). Parsing as an Energy Minimation Problem.
In: Genetic Algorithms and Simulated Annealing , Research notes in AI,
Morgan Kaufmann Publishers, Los Altos, Ca., pp. 141{154.

S.M. Shieber (1985a). Using Restriction to Extend Parsing Algorithms for Com-
plex Feature-Based Formalisms. 23rd Annual Meeting of the Association of
Computational Linguistics, (ACL'85), Chicago, pp. 145{152.

S.M. Shieber (1985b). Evidence against the Context-Freeness of Natural Lan-
guage. Linguistics and Philosophy 8, pp. 333{343.

S.M. Shieber (1986). An Introduction to Uni�cation-Based Approaches to
Grammar . CSLI Lecture Notes 4, Center for the Study of Language and
Information, Stanford University, Stanford, Ca.

S.M. Shieber (1988). A Uniform Architecture for Parsing and Generation. In-
ternational Conference on Computational Linguistics (COLING'88), Bu-
dapest, pp. 614{619.

S.M. Shieber (1992). Constraint-Based Grammar Formalisms: Parsing and
Type Inference for Natural and Computer Languages. The MIT Press, Cam-
bridge, Mass.

S.M. Shieber, F.C.N. Pereira, G. van Noord and R.C. Moore (1990).
Semantic-Head-Driven Generation. Computational Linguistics 16, pp. 30{
42.

Bibliography 409

J.H. Siekmann (1989). Uni�cation Theory. Journal of Symbolic Computation 7,
pp. 207{274.

K. Sikkel (1990a). Connectionist Parsing of Context-Free Grammars. Memo-
randa Informatica, Department of Computer Science, University of Twente,
Enschede, the Netherlands.

K. Sikkel (1990b). Cross-fertilization of Earley and Tomita. Memoranda
Informatica 90-69, Department of Computer Science, University of Twente,
Enschede, the Netherlands.

K. Sikkel (1991). Cross-Fertilization of Earley and Tomita. In: T. van der
Wouden and W. Sijtsma (Eds.), Computational Linguistics in The Nether-
lands, Papers of the �rst CLIN meeting, Utrecht, 1990 , OTS, University of
Utrecht, pp. 133{148.

K. Sikkel (forthcoming). Parallel On-Line Parsing in Constant Time per Word.
Theoretical Computer Science, to appear.

K. Sikkel and R. op den Akker (1992a). Left-Corner and Head-Corner
Chart Parsing. Memoranda Informatica 92-55, Department of Computer
Science, University of Twente, Enschede, the Netherlands.

K. Sikkel and R. op den Akker (1992b). Head-Corner Chart Parsing. In:
J.L.G. Dietz (Ed.), Computing Science in the Netherlands (CSN'92), Sticht-
ing Informatica Onderzoek in Nederland, Amsterdam, pp. 279{290.

K. Sikkel and R. op den Akker (1993). Predictive Head-Corner Chart Pars-
ing. 3rd International Workshop on Parsing Technologies (IWPT'93),
Tilburg and Durbuy, Netherlands/Belgium, pp. 267{276.

K. Sikkel and M. Lankhorst (1992). A Parallel Bottom-Up Tomita Parser.
In: G. G�orz (Ed.), 1. Konferenz Verarbeitung Nat�urlicher Sprache
(KONVENS'92), N�urnberg, Germany, Informatik Aktuell, Springer-Verlag,
Berlin, pp. 238{247.

K. Sikkel and A. Nijholt (1990). Connectionist Parsing of Context-Free

Grammars. In: A.J. van de Goor (Ed.), Computing Science in the Nether-
lands (CSN'90), Stichting Informatica Onderzoek Nederland, pp. 393{407.

K. Sikkel and A. Nijholt (1991). An E�cient Connectionist Context-Free
Parser. 2nd International Workshop on Parsing Technologies (IWPT'91),
Cancun, Mexico, pp. 117{126.

S. Sippu and E. Soisalon-Soininen (1990). Parsing Theory, vol. II: LR(k)
and LL(k) Parsing . EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, Berlin.

410 Bibliography

D.D. Sleator and D. Temperley (1993). Parsing English with a Link Gram-
mar. 3rd International Workshop on Parsing Technologies (IWPT'93),
Tilburg and Durbuy, Netherlands/Belgium, pp. 277{291.

G. Smolka (1989). Feature Constraint Logics for Uni�cation Grammars.
IWBS Report 93, Institut f�ur Wissensbasierte Systeme, IBM Deutschland,
Stuttgart, Germany.

G. Smolka (1992). Feature Constraint Logics for Uni�cation Grammars. Jour-
nal of Logic Programming 12, pp. 51{87.

F. Staal (1969). Sanskrit Philosophy of Language. Current Trends in Linguis-
tics 5, pp. 499{531.

G.J. van der Steen (1987). A ProgramGenerator for Recognition, Parsing and

Transduction with Syntactic Patterns. Ph.D. Thesis, University of Utrecht.
Also published as CWI Tract 55, Centre for Mathematics and Computer
Science, Amsterdam (1988).

J.L. Stephens (1841). Incidents of Travel in Central America, Chiapas, and
Yucatan. 2 Volumes, with illustrations by F. Catherwood. Harper and
Brothers, New York. (Reprinted by Dover Publications, New York, 1969).

J.L. Stephens (1843). Incidents of Travel in Yucatan. 2 Volumes, with illustra-
tions by F. Catherwood. Harper and Brothers, New York. (Reprinted by
Dover Publications, New York, 1963).

L. Stockmeyer and U. Vishkin (1984). Simulation of Parallel Random Access
Machines by Circuits, SIAM Journal of Computing 13, pp. 409{422.

T. Strzalkowksi and B. Vauthey (1992). Information Retrieval Using Ro-
bust Natural Language Processing. 30th Annual Meeting of the Association
for Computational Linguistics (ACL'92), Newark, Delaware, pp. 104{111.

H. Tanaka and H. Numazaki (1989). Parallel Generalized LR Parsing based
on Logic Programming. 1st International Workshop on Parsing Technologies
(IWPT'89), Pittsburgh, Pa., pp. 329{338.

J. Tarhio (1988). Attributed grammars for one-pass compilation. Ph.D. Thesis,
Report A-1988-11, Department of Computer Science, University of Helsinki,
Finland.

H.S. Thompson (1989). Chart Parsing for Loosely Coupled Parallel Systems. 1st
International Workshop on Parsing Technologies, (IWPT'89), Pittsburgh,
Pa., pp. 320{328.

Bibliography 411

H.S. Thompson, M. Dixon, and J. Lamping (1991). Compose-Reduce Pars-
ing. 29th Annual Meeting of the Association of Computational Linguistics,
(ACL'91), Berkeley, Ca., pp. 87{97.

H. Tomabechi (1991). Quasi-Destructive Graph Uni�cation. 29th Annual
Meeting of the Association of Computational Linguistics, (ACL'91), Berke-
ley, Ca., pp. 315{322.

M. Tomita (1985). E�cient Parsing for Natural Language. Kluwer Academic
Publishers, Boston, Mass.

M. Tomita (Ed.) (1991). Generalized LR Parsing . Kluwer Academic Publish-
ers, New York.

H. Trost (Ed.) (1993). Feature Formalisms and Linguistic Ambiguity . Ellis
Horwood Ltd., Chichester, UK.

H. Uszkoreit (1986). Categorial Uni�cation Grammars. International Confer-
ence on Computational Linguistics (Coling'90), pp. 187{194.

L.G. Valiant (1975). General Context-Free Recognition in Less than Cubic
Time. Journal of Computer and System Sciences 10, pp. 308{315.

M. Verlinden (1993). Ontwerp en implementatie van een head corner ontleder
voor grammatica's met feature structures. M.Sc. Thesis, Department of
Computer Science, University of Twente, Enschede, the Netherlands.

J. V�eronis (1992). Disjunctive Feature Structures as Hypergraphs. Inter-
national Conference on Computational Linguistics (COLING'92), Nantes,
France, pp. 498{504.

K. Vijay-Shanker and A.K. Joshi (1991). Uni�cation-Based Tree Adjoining
Grammars. Report MS-CIS-91-25, Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia.
To appear in J. Wedekind (Ed.), Uni�cation-Based Grammars, MIT Press
(forthcoming).

T. Vosse (1992). Detecting and Correcting Morpho-Syntactic Errors in Real
Texts. 3rd Conference on Applied Natural Language Processing , Trento,
Italy, pp. 111{118.

J.P.M. de Vreught and H.J. Honig (1989). A Tabular Bottom-Up recognizer,
Report 89-78, Department of Applied Mathematics and Informatics, Delft
University of Technology, Delft, the Netherlands.

J.P.M. de Vreught and H.J. Honig (1990). General Context-free Parsing.
Report 90-31, Department of Applied Mathematics and Informatics, Delft
University of Technology, Delft, the Netherlands.

412 Bibliography

J.P.M. de Vreught and H.J. Honig (1991). Slow and Fast Parallel Recog-
nition. 2nd International Workshop on Parsing Technologies (IWPT'91 ,
Cancun, Mexico, pp. 127{135.

D.L. Waltz and J.B. Pollack (1988). Massively Parallel Parsing: A Strongly
Interactive Model of Natural Language Interpretation. In: D.L. Waltz and
J.A. Feldman, Connectionist Models and their Implications, Readings from
Cognitive Science, Ablex Publishing Co., Norwood, NJ, pp. 181{204.

J. Wedekind (1988). Generation as Structure Driven Derivation 12th Interna-

tional Conference on Computational Linguistics (COLING'88), Budapest,
pp. 732{737.

A. van Wijngaarden (1965). Orthogonal Design and Description of a Formal
Language. Report MR76, Mathematical Centre, Amsterdam.

M. Willems (1992). The Chemistry of Language | a graph-theoretical study of
Linguistic Semantics. Ph.D. Thesis, Department of Applied Mathematics,
University of Twente, Enschede, The Netherlands.

T. Winograd (1972). Understanding Natural Language. Academic Press, New
York.

T. Winograd (1983). Language as a Cognitive Process. Vol. I: Syntax .
Addison-Wesley, Reading, Mass.

D.A. Wroblewski (1987). Nondestructive graph uni�cation. 6th Annual Con-
ference of the American Association of Arti�cial Intelligence (AAAI'87), pp.
582{587.

D.H. Younger (1967). Recognition of context-free languages in time n3, Infor-

mation and Control 10, pp. 189{208.

H. Zeevat, E. Klein and J. Calder (1987). An Introduction to Uni�cation
Categorial Grammar. In: N.J. Haddock, E. Klein, and G. Morill (Eds.), Ed-
inburgh Working Papers in Cognitive Science, Vol. 1: Categorial Grammar,
Uni�cation Grammar and Parsing , Center for Cognitive Science, University
of Edinburgh.

